zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Consensus seeking in multi-agent systems with an active leader and communication delays. (English) Zbl 1236.93006
Summary: In this paper, we consider a multi-agent consensus problem with an active leader and variable interconnection topology. The dynamics of the active leader is given in a general form of a linear system. The switching interconnection topology with communication delay among the agents is taken into consideration. A neighbor-based estimator is designed for each agent to obtain the unmeasurable state variables of the dynamic leader, and then a distributed feedback control law is developed to achieve consensus. The feedback parameters are obtained by solving a Riccati equation. By constructing a common Lyapunov function, some sufficient conditions are established to guarantee that each agent can track the active leader by assumption that interconnection topology is undirected and connected. We also point out that some results can be generalized to a class of directed interaction topologies. Moreover, the Input-to-State Stability (ISS) is obtained for multi-agent system with variable interconnection topology and communication delays in a disturbed environment.

MSC:
93A14Decentralized systems
93D25Input-output approaches to stability of control systems
93E12System identification (stochastic systems)
68T42Agent technology (AI aspects)
WorldCat.org
Full Text: Link EuDML
References:
[1] Fax, A., Murray, R.: Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Control 49 (2004), 1465-1476. · doi:10.1109/TAC.2004.834433
[2] Gao, L., Yuan, H., Jin, D.: Consensus problems in multi-agent systems with double integrator model. Chinese Physical B, 19 (2010) 050520. · doi:10.1088/1674-1056/19/5/050520
[3] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. · Zbl 0968.05002
[4] Gu, K., Kharitonov, V., Chen, J.: Stability of Time-Delay Systems. Springer Verlag, Boston 2003. · Zbl 1039.34067
[5] Hale, J., Lunel, S. V.: Introduction to Theory of Functional Differential Equations. Springer, New York 1991. · Zbl 0725.34071
[6] Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44 (2008), 846-850. · Zbl 1283.93019 · doi:10.1016/j.automatica.2007.07.004
[7] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013 · arxiv:0705.0403
[8] Hong, Y., Wang, X.: Multi-agent tracking of a high-dimensional active leader with switching topology. J. Syst. Sci. Complex. 22 (2009), 722-731. · Zbl 1300.93014 · doi:10.1007/s11424-009-9197-z
[9] Horn, R., Johnson, C.: Matrix Analysis. Cambridge Univ. Press, New York 1985. · Zbl 0576.15001 · doi:10.1017/CBO9780511810817
[10] Hu, J.: On robust consensus of multi-agent systems with communicaiton delays. Kybernetika 5 (2009), 768-784. · Zbl 1190.93003 · http://www.kybernetika.cz/content/2009/5/768 · eudml:37700
[11] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46 (2010), 1382-1387. · Zbl 1204.93011 · doi:10.1016/j.automatica.2010.05.020 · arxiv:1108.1855
[12] Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays. Physica A 37 (2007), 853-863.
[13] Luo, Y., Gao, L., Wang, F.: The $L_2-L_{\infty }$ control for leader-following coordination with switching topology and time-delay. J. Networks 5 (2010), 1513-1520.
[14] Murray, R. M.: Recent research in cooperative control of multivehicle systems. ASME J. Dynamic Systems, Measurement, and Control 129 (2007), 571-583. · doi:10.1115/1.2766721
[15] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control, 49 (2004), 1520-1533. · doi:10.1109/TAC.2004.834113
[16] Ren, W., Beard, R. W.: Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. Springer, Berlin 2008. · Zbl 1144.93002
[17] Sontag, E.: On the input-to-state stability property. European J. Control 1 (1995), 24-36. · Zbl 1177.93003 · doi:10.1016/S0947-3580(95)70005-X · http://www.mit.edu/~esontag/FTP_DIR/iss-ejc.pdf
[18] Teel, A.: Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans. Automat. Control 45 (1998), 960-964. · Zbl 0952.93121 · doi:10.1109/9.701099
[19] Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to a robust output regulation problem for linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2896. · doi:10.1109/TAC.2010.2076250