zbMATH — the first resource for mathematics

Robust coordination control of switching multi-agent systems via output regulation approach. (English) Zbl 1236.93010
Summary: In this paper, the distributed output regulation problem of uncertain multi-agent systems with switching interconnection topologies is considered. All the agents will track or reject the signals generated by an exosystem (or an active leader). A systematic distributed design approach is proposed to handle output regulation via dynamic output feedback with the help of canonical internal model. With common solutions of regulator equations and Lyapunov functions, the distributed robust output regulation with switching interconnection topology is solved.

93A14 Decentralized systems
93C10 Nonlinear systems in control theory
93B10 Canonical structure
Full Text: EuDML Link
[1] Isidori, A., Marconi, L., Serrani, A.: Robust Autonomous Guidance: An Internal Model-based Approach. Springer Verlag, London 2003. · Zbl 0991.93535
[2] Francis, B., Wonham, W.: The internal model principle of control theory. Automatica, 12 (1976), 457-465. · Zbl 0344.93028
[3] Ding, Z.: Decentralized output regulation of large scale nonlinear systems with delay. Kybernetika 45 (2009), 33-48. · Zbl 1158.93303
[4] Gazi, V.: Formation control of a multi-agent system using nonlinear servomechanism. Internat. J. Control 78 (2005), 554-565. · Zbl 1134.93333
[5] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. · Zbl 0968.05002
[6] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. · Zbl 1117.93300
[7] Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapunov-based approach to multi-agent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943-948. · Zbl 1366.93437
[8] Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44 (2008), 846-850. · Zbl 1283.93019
[9] Horn, R. A., Johnson, C. R.: Matrix Theory. Cambridge University Press, 1986.
[10] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46 (2010), 1382-1381. · Zbl 1204.93011
[11] Huang, J.: Nonlinear Output Regulation: Theory & Applications. SIAM, Phildelphia 2004. · Zbl 1087.93003
[12] Huang, J.: Comments on synchronized output regulation of networked linear systems. IEEE Trans. Automat. Control 56 (2011), 630-632. · Zbl 1368.93467
[13] Huang, J., Chen, Z.: A general framework for tackling the output regulation problem. IEEE Trans. Automat. Control 49 (2004), 2203-2218. · Zbl 1365.93446
[14] Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control 48 (2003), 998-1001. · Zbl 1364.93514
[15] Nikiforov, V. O.: Adaptive nonlinear tracking with complete compensation of unknown disturbances. European J. Control 4 (1998), 132-139. · Zbl 1047.93550
[16] Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95 (2007), 215-233. · Zbl 1376.68138
[17] Ren, W.: Multi-vehicle consensus with a time-varying reference state. System Control Lett. 56 (2007), 474-483. · Zbl 1157.90459
[18] Ren, W., Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Control 50 (2005), 655-661. · Zbl 1365.93302
[19] Wang, X., Hong, Y., Jie, H., Jiang, Z.: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2895. · Zbl 1368.93577
[20] Wang, X., Hong, Y.: Parametrization and geometric analysis of coordination controllers for multi-agent systems. Kybernetika 45 (2009), 785-800. · Zbl 1209.93012
[21] Wonham, W. M.: Linear Multivariable Contol. Springer-Verlag, New York 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.