Wang, Faqiang; Liu, Chongxin A new criterion for chaos and hyperchaos synchronization using linear feedback control. (English) Zbl 1236.93131 Phys. Lett., A 360, No. 2, 274-278 (2006). Summary: Based on the characteristic of the chaotic or hyperchaotic system and linear feedback control method, synchronization of the two identical chaotic or hyperchaotic systems with different initial conditions is studied. The range of the control parameter for synchronization is derived. Simulation results are provided to show the effectiveness of the proposed synchronization method. Cited in 26 Documents MSC: 93D15 Stabilization of systems by feedback 34D06 Synchronization of solutions to ordinary differential equations 34C28 Complex behavior and chaotic systems of ordinary differential equations Keywords:chaos synchronization; hyperchaos synchronization; linear feedback control; largest Lyapunov exponent PDF BibTeX XML Cite \textit{F. Wang} and \textit{C. Liu}, Phys. Lett., A 360, No. 2, 274--278 (2006; Zbl 1236.93131) Full Text: DOI References: [1] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990) [2] Jiang, G. P.; Chen, G. R.; Wallace, K. S.T., Int. J. Bifur. Chaos, 13, 2343 (2003) [3] Park, J. H., Chaos Solitons Fractals, 25, 579 (2005) [4] Fang, J. Q.; Ali, M. K., Nucl. Sci. Techn., 8, 193 (1997) [5] Hegazi, A. S.; Agiza, H. Z.; El-Dessoky, M. M., Int. J. Bifur. Chaos, 12, 1579 (2002) [6] Yang, T.; Li, X. F.; Shao, H. H., Proc. Amer. Control Conf., 2299 (2001) [7] Zhang, H.; Ma, X. K.; Yang, Y.; Xu, C. D., Chin. Phys., 14, 86 (2005) [8] Jiang, G. P.; Wallace, K. S.T., Int. J. Bifur. Chaos, 12, 2239 (2002) [9] Wang, X. F.; Wang, Z. Q.; Chen, G. R., Int. J. Bifur. Chaos, 9, 1169 (1999) [10] Benettin, G.; Galgani, L.; Strelcyn, J.-M., Phys. Rev. A, 14, 2338 (1976) [11] Matsumoto, T.; Chua, L. O.; Komuro, M., IEEE Trans. Circuits Systems, 32, 797 (1985) [12] Matsumoto, T.; Chua, L. O.; Kobayashi, K., IEEE Trans. Circuits Systems, 33, 1143 (1986) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.