A new criterion for chaos and hyperchaos synchronization using linear feedback control. (English) Zbl 1236.93131

Summary: Based on the characteristic of the chaotic or hyperchaotic system and linear feedback control method, synchronization of the two identical chaotic or hyperchaotic systems with different initial conditions is studied. The range of the control parameter for synchronization is derived. Simulation results are provided to show the effectiveness of the proposed synchronization method.


93D15 Stabilization of systems by feedback
34D06 Synchronization of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
Full Text: DOI


[1] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990)
[2] Jiang, G. P.; Chen, G. R.; Wallace, K. S.T., Int. J. Bifur. Chaos, 13, 2343 (2003)
[3] Park, J. H., Chaos Solitons Fractals, 25, 579 (2005)
[4] Fang, J. Q.; Ali, M. K., Nucl. Sci. Techn., 8, 193 (1997)
[5] Hegazi, A. S.; Agiza, H. Z.; El-Dessoky, M. M., Int. J. Bifur. Chaos, 12, 1579 (2002)
[6] Yang, T.; Li, X. F.; Shao, H. H., Proc. Amer. Control Conf., 2299 (2001)
[7] Zhang, H.; Ma, X. K.; Yang, Y.; Xu, C. D., Chin. Phys., 14, 86 (2005)
[8] Jiang, G. P.; Wallace, K. S.T., Int. J. Bifur. Chaos, 12, 2239 (2002)
[9] Wang, X. F.; Wang, Z. Q.; Chen, G. R., Int. J. Bifur. Chaos, 9, 1169 (1999)
[10] Benettin, G.; Galgani, L.; Strelcyn, J.-M., Phys. Rev. A, 14, 2338 (1976)
[11] Matsumoto, T.; Chua, L. O.; Komuro, M., IEEE Trans. Circuits Systems, 32, 797 (1985)
[12] Matsumoto, T.; Chua, L. O.; Kobayashi, K., IEEE Trans. Circuits Systems, 33, 1143 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.