Wu, Guo-Cheng; Lee, E. W. M. Fractional variational iteration method and its application. (English) Zbl 1237.34007 Phys. Lett., A 374, No. 25, 2506-2509 (2010). Summary: Fractional differential equations have been investigated by variational iteration method. However, the previous works avoid the term of fractional derivative and handle them as a restricted variation. We propose herein a fractional variational iteration method with modified Riemann-Liouville derivative which is more efficient to solve the fractional differential equations. Cited in 124 Documents MSC: 34A08 Fractional ordinary differential equations 35R11 Fractional partial differential equations 26A33 Fractional derivatives and integrals 39B12 Iteration theory, iterative and composite equations Keywords:modified Riemann-Liouville derivative; fractional functional; fractional variational iteration method PDF BibTeX XML Cite \textit{G.-C. Wu} and \textit{E. W. M. Lee}, Phys. Lett., A 374, No. 25, 2506--2509 (2010; Zbl 1237.34007) Full Text: DOI References: [1] He, J. H., Comput. Methods Appl. Mech. Eng., 167, 1-2, 57 (1998) [2] He, J. H., Comput. Methods Appl. Mech. Eng., 167, 1-2, 69 (1998) [3] He, J. H., Int. J. Nonlinear Mech., 34, 4, 699 (1999) [4] He, J. H., Appl. Math. Comput., 114, 2-3, 115 (2000) [5] Wazwaz, A. M., Comput. Math. Appl., 41, 10-11, 1237 (2001) [6] Draganescu, G. E.; Capalnasan, V., Int. J. Nonlinear Sci., 4, 3, 219 (2003) [7] Draganescu, G. E.; Cofan, N.; Rujan, D. L., J. Optoelectron. Adv. Mater., 7, 2, 877 (2005) [8] Abdou, M. A.; Soliman, A. A., Physica D, 211, 1-2, 1 (2005) [9] Abdou, M. A.; Soliman, A. A., J. Comput. Appl. Math., 181, 2, 245 (2005) [10] Abulwafa, E. M.; Abdou, M. A.; Mahmoud, A. A., Chaos Solitons Fractals, 29, 2, 313 (2006) [11] Soliman, A. A., Math. Comput. Simulat., 70, 2, 119 (2005) [12] Momani, S.; Odibat, Z., Phys. Lett. A, 355, 4-5, 271 (2006) [13] Odibat, Z. M.; Momani, S., Int. J. Nonlinear Sci., 7, 1, 27 (2006) [14] He, J. H.; Wu, G. C.; Austin, F., Nonlinear Sci. Lett. A, 1, 1, 1 (2010) [15] Jumarie, G., Int. J. Syst. Sci., 6, 1113 (1993) [16] Jumarie, G., Math. Comput. Model., 44, 231 (2006) [17] Jumarie, G., Appl. Math. Lett., 22, 1659 (2009) [18] Jumarie, G., Comput. Math. Appl., 51, 1367 (2006) [19] Wu, G. C.; He, J. H., Nonlinear Sci. Lett. A, 1, 3, 281 (2010) [20] Roman, H. E.; Alemany, P. A., J. Phys. A - Math. Gen., 27, 3407 (1994) [21] Fujita, Y., Osaka J. Math., 27, 2, 309 (1990) [22] Fujita, Y., Osaka J. Math., 27, 4, 797 (1990) [23] Oldham, K. B.; Spanier, J., The Fractional Calculus (1999), Academic Press: Academic Press New York · Zbl 0428.26004 [24] Gorenflo, R.; Mainardi, F., Fractional Calculus Appl. Anal., 1, 167 (1998) · Zbl 0946.60039 [25] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P., J. Comput. Phys., 213, 205 (2006) [26] Mainardi, F., Chaos Solitons Fractals, 7, 9, 1461 (1996) [27] Mainardi, F., Appl. Math. Lett., 9, 6, 23 (1996) [28] Agarwal, O. P., Nonlinear Dynam., 29, 145 (2002) [29] Al-Khaled, K.; Momani, S., Appl. Math. Comput., 165, 2, 473 (2005) [30] Ozdemir, N.; Karadeniz, D., Phys. Lett. A, 372, 38, 5968 (2008) [31] Das, S., Comput. Math. Appl., 57, 3, 483 (2009) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.