Yu, Wenguang Finite-time stabilization of three-dimensional chaotic systems based on CLF. (English) Zbl 1237.34093 Phys. Lett., A 374, No. 30, 3021-3024 (2010). Summary: This Letter investigates the stabilization of three-dimensional chaotic systems in a finite time. Based on the finite-time stability theory, a control law is proposed to realize finite-time chaos stabilization of three-dimensional chaotic systems. Several illustrative examples with numerical simulations are studied by using the results obtained in this Letter. Study of examples shows that our control methods work very well in stabilizing a class of chaotic systems in a finite time. Cited in 1 ReviewCited in 15 Documents MSC: 34C28 Complex behavior and chaotic systems of ordinary differential equations 34H10 Chaos control for problems involving ordinary differential equations 34K20 Stability theory of functional-differential equations Keywords:chaos; chaos control; finite-time stabilization; CLF PDF BibTeX XML Cite \textit{W. Yu}, Phys. Lett., A 374, No. 30, 3021--3024 (2010; Zbl 1237.34093) Full Text: DOI References: [1] Ott, E.; Grebogi, C.; Yorke, J. A., Phys. Rev. Lett., 64, 1196 (1990) [2] Boccaletti, S.; Grebogi, C.; Lai, Y. C., Phys. Rep., 329, 103 (2000) [3] Yang, L.; Liu, Z. R.; Mao, J. M., Phys. Rev. Lett., 84, 67 (2000) [4] Singer, J.; Wang, Y. Z.; Bau, H. H., Phys. Rev. Lett., 66, 1123 (1991) [5] Auerbach, D.; Grebogi, C.; Ott, E.; Yorke, J. A., Phys. Rev. Lett., 69, 3479 (1992) [6] Yu, W. G., Phys. Lett. A, 374, 1488 (2010) [8] Haimo, V. T., SIAM J. Control Optim., 24, 760 (1986) [9] Wang, H.; Han, Z. Z., Nonlinear Anal.: Real World Appl., 10, 2842 (2009) [10] Wang, H.; Han, Z. Z., Commun. Nonlinear Sci. Numer. Simul., 14, 2239 (2009) [11] Lü, J. H.; Chen, G. R.; Cheng, D. Z., Int. J. Bifur. Chaos, 12, 2917 (2002) [12] Dadras, S.; Momeni, H. R., Phys. Lett. A, 373, 3637 (2009) · Zbl 1233.37022 [13] Genesio, R.; Tesi, A., Automatica, 28, 531 (1992) [14] Tigan, G.; Opris, D., Chaos Solitons Fractals, 36, 1315 (2008) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.