# zbMATH — the first resource for mathematics

Bifurcation for a reaction-diffusion system with unilateral and Neumann boundary conditions. (English) Zbl 1237.35013
The authors study bifurcations of stationary solutions of the reaction-diffusion system $\frac{du}{dt}=d_1\Delta u+b_{11}u+b_{12}v+f_1(u,v),\;\frac{dv}{dt}=d_2\Delta v+b_{21}u+b_{22}v+f_2(u,v)$ in a bounded domain $$\Omega\subseteq \mathbb{R}^N$$ with Neumann-Signorini boundary conditions $\frac{\partial u}{\partial n}=0\;\text{on}\;\partial \Omega;\;v\geq 0,\;\frac{\partial v}{\partial n}\geq 0,\;\frac{\partial v}{\partial n} v=0\;\text{on}\;\Gamma;\;\frac{\partial v}{\partial n}= 0\;\text{on}\;(\partial \Omega)\setminus \Gamma,\;\Gamma\subseteq \Omega.$ The diffusion coefficients $$d=(d_1,d_2)\in \mathbb{R}_+^2$$ are considered as bifurcation parameters and $$f_j$$ represent “higher order terms” of some nonlinearity. The assumptions concerning the real coefficients $$b_{ij}$$ guarantee that Turing’s effect of diffusion-driven instability with purely Neumann conditions $$\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0\;\text{on}\;\partial \Omega$$ occurs.

##### MSC:
 35B32 Bifurcations in context of PDEs 35K57 Reaction-diffusion equations 47J20 Variational and other types of inequalities involving nonlinear operators (general)
Full Text:
##### References:
 [1] Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod Paris · Zbl 0189.40603 [2] Friedmann, A., Variational principles and free-boundary problems, (1982), John Wiley & Sons New York [3] Rodrigues, J.-F., Obstacle problems in mathematical physics, (1987), North-Holland Amsterdam · Zbl 0606.73017 [4] Turing, A.M., The chemical basis of morphogenesis, Philos. trans. R. soc. lond. ser. B, 237, 641, 37-72, (1952) · Zbl 1403.92034 [5] Baltaev, J.I.; Kučera, M., Global bifurcation for quasi-variational inequalities of reaction-diffusion type, J. math. anal. appl., 345, 917-928, (2008) · Zbl 1145.49004 [6] Drábek, P.; Kučera, M.; Míková, M., Bifurcation points of reaction-diffusion systems with unilateral conditions, Czechoslovak math. J., 35, 639-660, (1985) · Zbl 0604.35042 [7] Eisner, J., Reaction-diffusion systems: destabilizing effect of conditions given by inclusions, Math. bohem., 125, 4, 385-420, (2000) · Zbl 0963.35016 [8] Eisner, J., Reaction-diffusion systems: destabilizing effect of conditions given by inclusions II. examples, Math. bohem., 126, 1, 119-140, (2001) · Zbl 0977.35020 [9] Eisner, J.; Kučera, M., Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions, Fields inst. commun., 25, 239-256, (2000) · Zbl 0969.35019 [10] Eisner, J.; Kučera, M.; Väth, M., Global bifurcation of a reaction-diffusion system with inclusions, J. anal. appl., 28, 4, 373-409, (2009) · Zbl 1182.35025 [11] Eisner, J.; Kučera, M.; Väth, M., New bifurcation points for a reaction-diffusion system with two inequalities, J. math. anal. appl., 365, 176-194, (2010) · Zbl 1185.35074 [12] Kučera, M., Bifurcation points of variational inequalities, Czechoslovak math. J., 32, 208-226, (1982) · Zbl 0621.49006 [13] Kučera, M., A new method for obtaining eigenvalues of variational inequalities. multiple eigenvalues, Czechoslovak math. J., 32, 197-207, (1982) · Zbl 0621.49005 [14] Kučera, M., Bifurcation of solutions to reaction-diffusion systems with unilateral conditions, (), 307-322 · Zbl 0857.35015 [15] Kučera, M., Influence of Signorini boundary conditions on bifurcation in reaction-diffusion systems, (), 601-610 [16] Kučera, M.; Bosák, M., Bifurcation for quasi-variational inequalities of reaction-diffusion type, Stab. appl. anal. contin. media, 3, 2, 111-127, (1993) [17] Quittner, P., Bifurcation points and eigenvalues of inequalities of reaction-diffusion type, J. reine angew. math., 380, 2, 1-13, (1987) · Zbl 0617.35053 [18] Väth, M., New beams of global bifurcation points for a reaction-diffusion system with inequalities or inclusions, J. differential equations, 247, 3040-3069, (2009) · Zbl 1188.35019 [19] Edelstein-Keshet, L., Mathematical models in biology, (1988), McGraw-Hill Boston · Zbl 0674.92001 [20] Murray, J.D., Mathematical biology, (1993), Springer New York · Zbl 0779.92001 [21] Mimura, M.; Nishiura, Y.; Yamaguti, M., Some diffusive prey and predator systems and their bifurcation problems, Ann. N. Y. acad. sci., 316, 490-510, (1979) [22] Fujii, H.; Nishiura, Y., Global bifurcation diagram in nonlinear diffusion systems, (), 17-35 [23] Eisner, J.; Väth, M., Location of bifurcation points for a reaction-diffusion system with Neumann-Signorini conditions, Adv. nonlinear stud., 11, 809-836, (2011) · Zbl 1258.35020 [24] Eisner, J.; Kučera, M.; Recke, L., Smooth continuation of solutions and eigenvalues for variational inequalities based on the implicit function theorem, J. math. anal. appl., 274, 159-180, (2002) · Zbl 1040.49006 [25] Eisner, J.; Kučera, M.; Väth, M., Degree and global bifurcation of elliptic equations with multivalued unilateral conditions, Nonlinear anal., 64, 1710-1736, (2006) · Zbl 1111.47055 [26] M. Väth, Continuity and differentiability of multivalued superposition operators with atoms and parameters I, J. Anal. Appl. (2011), in press. [27] M. Väth, Continuity and differentiability of multivalued superposition operators with atoms and parameters II, J. Anal. Appl. (2011), in press. [28] Kinderlehrer, D.; Stampacchia, G., An introduction to variational inequalities and their applications, (1980), Academic Press New York · Zbl 0457.35001 [29] Nishiura, Y., Global structure of bifurcating solutions of some reaction-diffusion systems and their stability problem, () · Zbl 0501.35010 [30] Quittner, P., Solvability and multiplicity results for variational inequalities, Comment. math. univ. carolin., 30, 2, 281-302, (1989) · Zbl 0698.49004 [31] Väth, M., Global solution branches and a topological implicit function theorem, Ann. mat. pura appl., 186, 2, 199-227, (2007) · Zbl 1150.58006 [32] Väth, M., A disc-cutting theorem and two-dimensional bifurcation, Cubo, 10, 4, 85-100, (2008) · Zbl 1169.35352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.