zbMATH — the first resource for mathematics

Bifurcation for a reaction-diffusion system with unilateral and Neumann boundary conditions. (English) Zbl 1237.35013
The authors study bifurcations of stationary solutions of the reaction-diffusion system $\frac{du}{dt}=d_1\Delta u+b_{11}u+b_{12}v+f_1(u,v),\;\frac{dv}{dt}=d_2\Delta v+b_{21}u+b_{22}v+f_2(u,v)$ in a bounded domain $$\Omega\subseteq \mathbb{R}^N$$ with Neumann-Signorini boundary conditions $\frac{\partial u}{\partial n}=0\;\text{on}\;\partial \Omega;\;v\geq 0,\;\frac{\partial v}{\partial n}\geq 0,\;\frac{\partial v}{\partial n} v=0\;\text{on}\;\Gamma;\;\frac{\partial v}{\partial n}= 0\;\text{on}\;(\partial \Omega)\setminus \Gamma,\;\Gamma\subseteq \Omega.$ The diffusion coefficients $$d=(d_1,d_2)\in \mathbb{R}_+^2$$ are considered as bifurcation parameters and $$f_j$$ represent “higher order terms” of some nonlinearity. The assumptions concerning the real coefficients $$b_{ij}$$ guarantee that Turing’s effect of diffusion-driven instability with purely Neumann conditions $$\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0\;\text{on}\;\partial \Omega$$ occurs.

MSC:
 35B32 Bifurcations in context of PDEs 35K57 Reaction-diffusion equations 47J20 Variational and other types of inequalities involving nonlinear operators (general)
Full Text:
References:
  Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod Paris · Zbl 0189.40603  Friedmann, A., Variational principles and free-boundary problems, (1982), John Wiley & Sons New York  Rodrigues, J.-F., Obstacle problems in mathematical physics, (1987), North-Holland Amsterdam · Zbl 0606.73017  Turing, A.M., The chemical basis of morphogenesis, Philos. trans. R. soc. lond. ser. B, 237, 641, 37-72, (1952) · Zbl 1403.92034  Baltaev, J.I.; Kučera, M., Global bifurcation for quasi-variational inequalities of reaction-diffusion type, J. math. anal. appl., 345, 917-928, (2008) · Zbl 1145.49004  Drábek, P.; Kučera, M.; Míková, M., Bifurcation points of reaction-diffusion systems with unilateral conditions, Czechoslovak math. J., 35, 639-660, (1985) · Zbl 0604.35042  Eisner, J., Reaction-diffusion systems: destabilizing effect of conditions given by inclusions, Math. bohem., 125, 4, 385-420, (2000) · Zbl 0963.35016  Eisner, J., Reaction-diffusion systems: destabilizing effect of conditions given by inclusions II. examples, Math. bohem., 126, 1, 119-140, (2001) · Zbl 0977.35020  Eisner, J.; Kučera, M., Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions, Fields inst. commun., 25, 239-256, (2000) · Zbl 0969.35019  Eisner, J.; Kučera, M.; Väth, M., Global bifurcation of a reaction-diffusion system with inclusions, J. anal. appl., 28, 4, 373-409, (2009) · Zbl 1182.35025  Eisner, J.; Kučera, M.; Väth, M., New bifurcation points for a reaction-diffusion system with two inequalities, J. math. anal. appl., 365, 176-194, (2010) · Zbl 1185.35074  Kučera, M., Bifurcation points of variational inequalities, Czechoslovak math. J., 32, 208-226, (1982) · Zbl 0621.49006  Kučera, M., A new method for obtaining eigenvalues of variational inequalities. multiple eigenvalues, Czechoslovak math. J., 32, 197-207, (1982) · Zbl 0621.49005  Kučera, M., Bifurcation of solutions to reaction-diffusion systems with unilateral conditions, (), 307-322 · Zbl 0857.35015  Kučera, M., Influence of Signorini boundary conditions on bifurcation in reaction-diffusion systems, (), 601-610  Kučera, M.; Bosák, M., Bifurcation for quasi-variational inequalities of reaction-diffusion type, Stab. appl. anal. contin. media, 3, 2, 111-127, (1993)  Quittner, P., Bifurcation points and eigenvalues of inequalities of reaction-diffusion type, J. reine angew. math., 380, 2, 1-13, (1987) · Zbl 0617.35053  Väth, M., New beams of global bifurcation points for a reaction-diffusion system with inequalities or inclusions, J. differential equations, 247, 3040-3069, (2009) · Zbl 1188.35019  Edelstein-Keshet, L., Mathematical models in biology, (1988), McGraw-Hill Boston · Zbl 0674.92001  Murray, J.D., Mathematical biology, (1993), Springer New York · Zbl 0779.92001  Mimura, M.; Nishiura, Y.; Yamaguti, M., Some diffusive prey and predator systems and their bifurcation problems, Ann. N. Y. acad. sci., 316, 490-510, (1979)  Fujii, H.; Nishiura, Y., Global bifurcation diagram in nonlinear diffusion systems, (), 17-35  Eisner, J.; Väth, M., Location of bifurcation points for a reaction-diffusion system with Neumann-Signorini conditions, Adv. nonlinear stud., 11, 809-836, (2011) · Zbl 1258.35020  Eisner, J.; Kučera, M.; Recke, L., Smooth continuation of solutions and eigenvalues for variational inequalities based on the implicit function theorem, J. math. anal. appl., 274, 159-180, (2002) · Zbl 1040.49006  Eisner, J.; Kučera, M.; Väth, M., Degree and global bifurcation of elliptic equations with multivalued unilateral conditions, Nonlinear anal., 64, 1710-1736, (2006) · Zbl 1111.47055  M. Väth, Continuity and differentiability of multivalued superposition operators with atoms and parameters I, J. Anal. Appl. (2011), in press.  M. Väth, Continuity and differentiability of multivalued superposition operators with atoms and parameters II, J. Anal. Appl. (2011), in press.  Kinderlehrer, D.; Stampacchia, G., An introduction to variational inequalities and their applications, (1980), Academic Press New York · Zbl 0457.35001  Nishiura, Y., Global structure of bifurcating solutions of some reaction-diffusion systems and their stability problem, () · Zbl 0501.35010  Quittner, P., Solvability and multiplicity results for variational inequalities, Comment. math. univ. carolin., 30, 2, 281-302, (1989) · Zbl 0698.49004  Väth, M., Global solution branches and a topological implicit function theorem, Ann. mat. pura appl., 186, 2, 199-227, (2007) · Zbl 1150.58006  Väth, M., A disc-cutting theorem and two-dimensional bifurcation, Cubo, 10, 4, 85-100, (2008) · Zbl 1169.35352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.