zbMATH — the first resource for mathematics

Large time asymptotics for partially dissipative hyperbolic systems. (English) Zbl 1237.35017
This paper is concerned with the long time asymptotics for partially dissipative hyperbolic systems. First, linear systems are analyzed and then existence of global solutions for nonlinear systems is discussed. The role of theoretical control tools is examined, and the proof of decay using Lyapunov functionals is developed. A general statement giving a decomposition for the solutions is established. The existence of global (in time) smooth solutions for the nonlinear systems around a constant equilibrium is studied. As an illustration, a class of nonlinear hyperbolic systems with relaxation is considered, and its uniform well posedness with respect to the relaxation parameter is established.

35B40 Asymptotic behavior of solutions to PDEs
35L60 First-order nonlinear hyperbolic equations
35L45 Initial value problems for first-order hyperbolic systems
35L65 Hyperbolic conservation laws
Full Text: DOI
[1] Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37, 1973–2004 (2000) · Zbl 0964.65096 · doi:10.1137/S0036142998343075
[2] Bianchini, S., Hanouzet, B., Natalini, R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60(11), 1559–1622 (2007) · Zbl 1152.35009 · doi:10.1002/cpa.20195
[3] Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95, 113–170 (1999) · Zbl 0957.82028 · doi:10.1023/A:1004525427365
[4] Carbou, G., Hanouzet, B.: Relaxation approximation of Kerr model for the three dimensional initial boundary value problem. JHDE (2010, in press) · Zbl 1180.35337
[5] Carbou, G., Hanouzet, B., Natalini, R.: Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation. J. Differ. Equ. 246(1), 291–319 (2009) · Zbl 1171.35073 · doi:10.1016/j.jde.2008.05.015
[6] Chern, I.-L.: Long time effect of relaxation for hyperbolic conservation laws. Comm. Math. Phys. 172(1), 39–55 (1995) · Zbl 0851.35086 · doi:10.1007/BF02104510
[7] Coron, J.-M.: Control and nonlinearity. Mathematical Surveys and Monographs, Vol. 136. American Mathematical Society, New York, 2007 · Zbl 1140.93002
[8] Coulombel, J.-F., Goudon, T.: The strong relaxation limit of the multidimensional isothermal Euler equations. Trans. Am. Math. Soc. 359(2), 637–648 (2007) · Zbl 1170.35477 · doi:10.1090/S0002-9947-06-04028-1
[9] Dafermos, C.M.: A system of hyperbolic conservation laws with frictional damping. Theoretical, experimental and numerical contributions to the mecanics of fluids and solids. Z. Angew. Math. Phys. 46, S294–S307 (1995)
[10] Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. Springer, Berlin, 2000 · Zbl 0940.35002
[11] Dafermos, C.M.: Hyperbolic systems of balance laws with weak dissipation. J. Hyperbolic Differ. Equ. 3, 505–527 (2006) · Zbl 1107.35076 · doi:10.1142/S0219891606000884
[12] Hanouzet, B., Huynh, P.: Approximation par relaxation d un systFme de Maxwell non linTaire. C.R. Acad. Sci. Paris STr. I Math. 330, 193–198 (2000) · Zbl 0942.78005
[13] Hanouzet, B., Natalini, R.: Global existence of smooth solutions for partially dissipative hyperbolic systems with convex entropy. Arch. Ration. Mech. Anal. 169, 89–117 (2003) · Zbl 1037.35041 · doi:10.1007/s00205-003-0257-6
[14] Haraux, A.: Semi-linear hyperbolic problems in bounded domains. Math. Rep. 3(1), 1–281 (1987) · Zbl 0875.35054
[15] Haraux, A., Zuazua, E.: Decay estimates for some semilinear damped hyperbolic problems. Arch. Ration. Mech. Anal. 100(2), 191–206 (1988) · Zbl 0654.35070 · doi:10.1007/BF00282203
[16] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[17] Hosono, T., Shuichi, K.: Decay property of regularity-loss type and application to some nonlinear hyperbolic–elliptic systems. Math. Models Methods Appl. Sci. 16(11), 1839–1859 (2006) · Zbl 1108.35014 · doi:10.1142/S021820250600173X
[18] Hsiao, L., Liu, T.-P.: Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Comm. Math. Physics 143, 599–605 (1992) · Zbl 0763.35058 · doi:10.1007/BF02099268
[19] Hsiao, L., Serre, D.: Global existence of solutions for the system of compressible adiabatic flow through porous media. SIAM J. Math. Anal. 27, 70–77 (1996) · Zbl 0849.35069 · doi:10.1137/S0036141094267078
[20] Ide, K., Haramoto, K., Kawashima, S.: Decay property of regularity-loss type for dissipative Timoshenko system. Math. Models Methods Appl. Sci. 18(5), 647–667 (2008) · Zbl 1153.35013 · doi:10.1142/S0218202508002802
[21] Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin, 1995 (Reprint of the 1980 edition) · Zbl 0836.47009
[22] Li, T.-T.: Global Classical Solutions for Quasilinear Hyperbolic Systems. Masson, Paris, 1994 · Zbl 0841.35064
[23] Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variable. Springer, New York, 1984 · Zbl 0537.76001
[24] Mascia, C., Natalini, R.: On relaxation hyperbolic systems violating the Shizuta– Kawashima condition. ARMA (2010, in press) · Zbl 1244.35086
[25] Natalini, R.: Recent results on hyperbolic relaxation problems. Analysis of systems of conservation laws (Aachen, 1997). Chapman and Hall, Boca Raton, 128–198, 1999 · Zbl 0940.35127
[26] Nishida, T.: Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics. Département de mathématiques, Université Paris Sud, Orsay, Pré publications mathématiques d Orsay, 78-02, 1978
[27] Orive, R., Zuazua, E.: Long-time behavior of solutions to a nonlinear hyperbolic relaxation system. J. Differ. Equ. 228(1), 17–38 (2006) · Zbl 1102.35022 · doi:10.1016/j.jde.2006.04.014
[28] Ruggeri, T., Serre, D.: Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Q. Appl. Math. 62, 163–179 (2004) · Zbl 1068.35067
[29] Serre, D.: Systè mes de lois de conservation, tome 1. Diderot editeur, Arts et Sciences, Paris, New York, Amsterdam, 1996
[30] Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic–parabolic type with application to the discrete boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985) · Zbl 0587.35046
[31] Sideris, T.C., Thomases, B., Wang, D.: Long time behaviour of solutions to the 3D compressible Euler equations with damping. Comm. PDE 28, 795–816 (2003) · Zbl 1048.35051 · doi:10.1081/PDE-120020497
[32] Trelat, E.: Contrôle optimal: théorie et applications. Vuilbert, collection Mathématiques Concrè tes (2005)
[33] Tzavaras, A.: Materials with internal variables and relaxation of conservation laws. Arch. Rational Mech. Anal. 146, 129–155 (1999) · Zbl 0973.74005 · doi:10.1007/s002050050139
[34] Villani, C.: Hypocoercive diffusion operators. International Congress of Mathematicians, Vol. III. European Mathematical Society, Zürich, 473–498, 2006 · Zbl 1130.35027
[35] Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 182 (2010, to appear). http://www.umpa.ens-lyon.fr/cvillani/Cedrif/B09.Hypoco.pdf
[36] Yong, W.A.: Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal. 172, 247–266 (2004) · Zbl 1058.35162 · doi:10.1007/s00205-003-0304-3
[37] Zeng, Y.: Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Ration. Mech. Anal. 150(3), 225–279 (1999) · Zbl 0966.76079 · doi:10.1007/s002050050188
[38] Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev., 47(2), 197–243 (2005) · Zbl 1077.65095 · doi:10.1137/S0036144503432862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.