[1] |
J. E. Sawyer, M. C. Kernan, D. E. Conlon, and H. Garland, “Responses to the Michelangelo computer virus threat: the role of information sources and risk homeostasis theory,” Journal of Applied Social Psychology, vol. 29, no. 1, pp. 23-51, 1999. |

[2] |
B. K. Mishra and D. K. Saini, “SEIRS epidemic model with delay for transmission of malicious objects in computer network,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1476-1482, 2007. · Zbl 1118.68014
· doi:10.1016/j.amc.2006.11.012 |

[3] |
B. K. Mishra and D. Saini, “Mathematical models on computer viruses,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 929-936, 2007. · Zbl 1120.68041
· doi:10.1016/j.amc.2006.09.062 |

[4] |
B. K. Mishra and N. Jha, “Fixed period of temporary immunity after run of anti-malicious software on computer nodes,” Applied Mathematics and Computation, vol. 190, no. 2, pp. 1207-1212, 2007. · Zbl 1117.92052
· doi:10.1016/j.amc.2007.02.004 |

[5] |
E. Gelenbe, “Dealing with software viruses: a biological paradigm,” Information Security Technical Report, vol. 12, no. 4, pp. 242-250, 2007.
· doi:10.1016/j.istr.2007.11.002 |

[6] |
E. Gelenbe, “Keeping viruses under control,” in Proceedings of the 20th International Symposium Computer and Information Sciences (ISCIS ’05), vol. 3733 of Lecture Notes in Computer Science, Springer, 2005. |

[7] |
W. O. Kermack and A. G. McKendrick, “Contributions of mathematical theory to epidemics,” Proceedings of the Royal Society of London Series A, vol. 115, pp. 700-721, 1927. · Zbl 53.0517.01 |

[8] |
W. O. Kermack and A. G. McKendrick, “Contributions of mathematical theory to epidemics,” Proceedings of the Royal Society of London Series A, vol. 138, pp. 55-83, 1932. · Zbl 0005.30501 |

[9] |
W. O. Kermack and A. G. McKendrick, “Contributions of mathematical theory to epidemics,” Proceedings of the Royal Society of London Series A, vol. 141, pp. 94-122, 1933. · Zbl 0007.31502 |

[10] |
W. O. Kermack and A. G. McKendrick, “Contributions of mathematical theory to epidemics,” Proceedings of the Royal Society of London Series A, vol. 115, pp. 700-721, 1927. · Zbl 53.0517.01 |

[11] |
W. O. Kermack and A. G. McKendrick, “Contributions of mathematical theory to epidemics,” Proceedings of the Royal Society of London Series A, vol. 138, pp. 55-83, 1932. · Zbl 0005.30501 |

[12] |
W. O. Kermack and A. G. McKendrick, “Contributions of mathematical theory to epidemics,” Proceedings of the Royal Society of London Series A, vol. 141, pp. 94-122, 1933. · Zbl 0007.31502 |

[13] |
W. T. Richard and J. C. Mark, “Modeling virus propagation in peer-to-peer networks,” in Proceedings of the IEEE International Conference on Information, Communications and Signal Processing (ICICS ’05), pp. 981-985, 2005. |

[14] |
Y. Yao, X. Xie, and H. Gao, “Hopf bifurcation in an Internet worm propagation model with time delay in quarantine,” Mathematical and Computer Modelling. In press. · Zbl 1286.92049 |

[15] |
H. Yuan and G. Chen, “Network virus-epidemic model with the point-to-group information propagation,” Applied Mathematics and Computation, vol. 206, no. 1, pp. 357-367, 2008. · Zbl 1162.68404
· doi:10.1016/j.amc.2008.09.025 |

[16] |
B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41, Cambridge University Press, Cambridge, UK, 1981. · Zbl 0474.34002 |

[17] |
M. Y. Li and J. S. Muldowney, “Global stability for the SEIR model in epidemiology,” Mathematical Biosciences, vol. 125, no. 2, pp. 155-164, 1995. · Zbl 0821.92022
· doi:10.1016/0025-5564(95)92756-5 |

[18] |
Y. Song, M. Han, and J. Wei, “Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays,” Physica D, vol. 200, no. 3-4, pp. 185-204, 2005. · Zbl 1062.34079
· doi:10.1016/j.physd.2004.10.010 |

[19] |
S. Ruan and J. Wei, “On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion,” IMA Journal of Mathemathics Applied in Medicine and Biology, vol. 18, no. 1, pp. 41-52, 2001. · Zbl 0982.92008 |

[20] |
X. Li and J. Wei, “On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays,” Chaos, Solitons and Fractals, vol. 26, no. 2, pp. 519-526, 2005. · Zbl 1098.37070
· doi:10.1016/j.chaos.2005.01.019 |

[21] |
H. Hu and L. Huang, “Stability and Hopf bifurcation analysis on a ring of four neurons with delays,” Applied Mathematics and Computation, vol. 213, no. 2, pp. 587-599, 2009. · Zbl 1175.34092
· doi:10.1016/j.amc.2009.03.052 |

[22] |
D. Fan, L. Hong, and J. Wei, “Hopf bifurcation analysis in synaptically coupled HR neurons with two time delays,” Nonlinear Dynamics, vol. 62, no. 1-2, pp. 305-319, 2010. · Zbl 1259.34081
· doi:10.1007/s11071-010-9718-2 |

[23] |
S. Ruan and J. Wei, “On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,” Dynamics of Continuous, Discrete & Impulsive Systems Series A, vol. 10, no. 6, pp. 863-874, 2003. · Zbl 1068.34072 |