×

From \(L_{\infty }\)-algebroids to higher Schouten/Poisson structures. (English) Zbl 1237.53077

This paper deals with L\(_\infty \) algebroids and their description in terms of certain higher Schouten and Poisson structures. Let us recall that L\(_\infty \) algebroids arise naturally when one generalizes the Lie algebroid structure on \(T^*M\) for a Poisson manifold to the higher structures. In this paper, the author completes the framework found in the theory of higher Schouten and Poisson structures. He recalls some basic facts about graded manifolds and L\(_\infty \) algebroids. Then, he proves that these L\(_\infty \) algebroids can be understood in terms of \(Q\)-manifolds and described in terms of higher Schouten and Poisson structures on graded manifolds and graded supermanifolds. Some explicit examples are also given to illustrate the main results of the paper. Applications are finally discussed.

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids
58A50 Supermanifolds and graded manifolds

References:

[1] Alexandrov, M.; Kontsevich, M.; Schwarz, A.; Zaboronsky, O., The geometry of the master equation and topological quantum field theory, Int J Mod Phys. A, 12, 1405-1430 (1997) · Zbl 1073.81655
[2] Alfaro, J.; Damgaard, P. H., Non-abelian antibrackets, Phys. Lett. B., 369, 289-294 (1996)
[3] Bagger, J.; Lambert, N., Modelmg multiple M2’s, Phys. Rev D, 75, 045020 (2007)
[4] Bagger, J.; Lambert, N., Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev D, 77, 065008 (2008)
[5] Basu, A.; Harvey, J. A., The M2-M5 brane system and a generalized Nahm’s equation, Nucl. Phys. B, 713, 136-150 (2005) · Zbl 1176.81095
[6] Batalin, I. A.; Vilkovisky, G. A., Gauge algebra and quantization, Phys. Lett. B., 102, 27-31 (1981)
[7] Batalin, I. A.; Vilkovisky, G. A., Quantization of gauge theories with linearly dependent generators, Phys. Rev D, 28, 2567-2582 (1983)
[8] Batalin, I.; Mamelius, R., Quantum antibrackets, Phys. Lett. B, 434, 312-320 (1998)
[9] Batalin, I.; Mamelius, R., General quantum antibrackets, Theor Math. Phys., 120, 1115-1132 (1999) · Zbl 0970.81081
[10] Bering, K.; Damgaard, P. H.; Alfaro, J., Algebra of higher antibrackets, Nucl. Phys. B, 478, 459-504 (1996) · Zbl 0925.81398
[11] Bruce, A. J., Tulczyjew triples and higher Poisson/Schouten structures on Lie algebroids, Rep. Math. Phys., 66, 2 (2010), Also avaliable as arXiv:math-ph/0910.1243. · Zbl 1235.53086
[12] Chryssomalakos, C.; de Azcarraga, J. A.; Macfarlane, A. J.; Perez Bueno, J. C., Higher order BRST and anti-BRST operators and cohomology for compact Lie algebras, J. Math. Phys., 40, 6009-6032 (1999) · Zbl 0964.81059
[13] de Azcárraga, J. A.; Perelomov, A. M.; Perez Bueno, J. C., New Generalized Poisson structures, J. Phys. A., 29, L151-L157 (1996) · Zbl 0912.53019
[14] de Azcárraga, J. A.; Perelomov, A. M.; Perez Bueno, J. C., The Schouten-Nijenhuis bracket, cohomology and generalized Poisson structures, J. Phys. A., 29, 7993-8010 (1996) · Zbl 0898.58026
[15] De Azcarraga, J. A.; Perez Bueno, J. C., Higher-order simple Lie algebras, Commun. Math. Phys., 184, 669-681 (1997) · Zbl 0878.17005
[16] Fradkm, E. S.; Vilkovisky, G. A., Quantization of relativistic systems with constraints, Phys. Lett. B., 55, 224-226 (1975) · Zbl 0967.81532
[17] Cattaneo, A.; Felder, G., Relative formality theorem and quantisation of coisotropic submanifolds, Adv Math., 208, 2, 521-548 (2007) · Zbl 1106.53060
[18] Filippov, V. T., \(n\)-Lie algebras, Sib. Mat Zh., 26, 6, 126-140 (1985) · Zbl 0585.17002
[19] Galvez-Carrillo, I.; Tonks, A.; Vallette, B., Homotopy Batalin-Vilkovisky algebras (2009), arXiv.org:math/0907.2246 · Zbl 1258.18005
[20] Ginzburg, V.; Kapranov, M., Koszul duality for operads, Duke Math. J, 1, 203-272 (1994) · Zbl 0855.18006
[21] Grabowski, J.; Rotkiewicz, M., Higher vector bundles and multi-graded symplectic manifolds, J Geom. Phys., 59, 1285-1305 (2009) · Zbl 1171.58300
[22] Gustavsson, A., Algebraic structures on parallel M2-branes, Nucl. Phys. B, 811, 66-76 (2009) · Zbl 1194.81205
[23] Hörmander, L., The analysis of linear partial differential operators. III, (Grundlehren der mathematischen Wissenschaften, Vol. 274 (1985), Springer: Springer Berlin), viii +522 · Zbl 0601.35001
[24] Batalin, I. A.; Vilkovisky, G. A., Relativistic S matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B, 69, 309-312 (1977)
[25] Iuliu-Lazaroiu, C.; McNamee, D.; Saemann, C.; Zejak, A., Strong homotopy Lie algebras, generalized nahm equations and multiple M2-branes (2009), arXiv:0901.3905 [hep-th].
[26] Khudaverdian, H. M.; Voronov, Th. Th., Higher Poisson brackets and differential forms (2008), arXiv:math-ph/0808.3406v2. · Zbl 1166.70011
[27] Kravchenko, O., Strongly homotopy Lie bialgebras and Lie quasi-bialgebras (2006), arXiv org math/0601301. · Zbl 1197.17012
[28] Lada, T.; Markl, M., Strongly homotopy Lie algebras (1994), arXv:9406095 [hep-th].
[29] Lada, T.; Stasheff, J., Introduction to SH Lie algebras for physicists, Int J Theor Phys., 32, 1087-1104 (1993) · Zbl 0824.17024
[30] Lambert, N.; Papageorgakis, C., Nonabelian (2,0) tensor multiplets and 3-algebras (2010), arXiv: 1007.2982 [hep-th]. · Zbl 1290.81125
[31] Mackenzie, K. C.H., On certain canonical diffeomorphisms in symplectic and Poisson geometry, (Quantization, Poisson Brackets and Beyond, vol, 315 of Contemp. Math. (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 187-198 · Zbl 1090.53062
[32] Mehta, R. A., On homotopy Poisson actions and reduction of symplectic \(Q\)-manifolds (2010), arXiv: 2009, 1280v1 [math. SG].
[33] Pradines, J., Theorie de lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, Comptes rendus Acad Sci. Paris, \(264A, 245-248 (1967)\) · Zbl 0154.21704
[34] Roytenberg, D., Courant algebroids, derived brackets and even symplectic supermanifolds, PhD thesis, UC Berkeley (1999), arXiv: math/9910078.
[35] Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Quantization, Poisson Brackets and Beyond, vol. 315 of Contemp. Math. (2002), Amer Math. Soc.: Amer Math. Soc. Providence, RI · Zbl 1036.53057
[36] U. Schreiber: Private communication.; U. Schreiber: Private communication.
[37] Tamarkin, D.; Tsygan, B., Noncommutative differential calculus, homotopy BV algebras and formality conjectures, arXiv: math. KT/0002116 (2000) · Zbl 0965.58010
[38] Vantrob, A. Yu., Lie algebroids and homological vector fields, Uspekhi Matem. Nauk, 52, 2, 428-429 (1997) · Zbl 0955.58017
[39] Voronov, Th. Th., (Geometric mtegration theory on supermanifolds. Geometric mtegration theory on supermanifolds, Sov Sci. Rev C Math. Phys., 9 (1992), Harwood Academic Publ.), 142p
[40] Voronov, Th. Th., On the Poisson envelope of a Lie algebra. Noncommutative space, Funk Anal. Pril, 29, 3, 61-64 (1995) · Zbl 0860.17036
[41] Voronov, Th. Th., Higher derived brackets and homotopy algebras, J Pure and Appl Algebra, 202 (2005) · Zbl 1136.17014
[42] Voronov, Th. Th., Higher derived brackets for arbitrary derivations, Travaux Mathématiques, XVI (2005) · Zbl 1136.17014
[43] Voronov, Th., Graded manifolds and Drmfeld doubles for Lie bialgebroids, (Quantization, Poisson Brackets and Beyond, vol. 315 of Contemp. Math. (2002), Amer Math. Soc.: Amer Math. Soc. Providence, RI), 131-168 · Zbl 1042.53056
[44] Theodore Th Voronov Mackenzie theory and \(Q\)-manifolds (2006), arXiv:math DG/0608111. · Zbl 1261.53080
[45] Voronov, Th. Th., Q-manifolds and higher analogs of Lie algebroids (2010), arXiv:math DG/1010 2009 · Zbl 1260.53133
[46] Ševera, P., Some title contammg the words “homotopy” and “symplectic”, e.g. this one (2001), arXiv:math/0105080.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.