Abdeljawad, Thabet Fixed points for generalized weakly contractive mappings in partial metric spaces. (English) Zbl 1237.54038 Math. Comput. Modelling 54, No. 11-12, 2923-2927 (2011). Summary: Partial metric spaces were introduced by S. G. Matthews in [Ann. N. Y. Acad. Sci. 728, 183–197 (1994; Zbl 0911.54025)] as a part of the study of denotational semantics of dataflow networks. In this article, we prove fixed point theorems for generalized weakly contractive mappings on partial metric spaces. These theorems generalize many previously obtained results. An example is given to show that our generalization from metric spaces to partial metric spaces is real. Cited in 54 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 54E35 Metric spaces, metrizability Keywords:partial metric space; generalized weakly contractive; fixed point; common fixed point; alternating distance function; property (P); property (Q) Citations:Zbl 0911.54025 PDF BibTeX XML Cite \textit{T. Abdeljawad}, Math. Comput. Modelling 54, No. 11--12, 2923--2927 (2011; Zbl 1237.54038) Full Text: DOI References: [3] Oltra, S.; Valero, O., Banach’s fixed point theorem for partial metric spaces, Rendiconti dell’Istituto di Matematica dell’Universit di Trieste, 36, 1-2, 17-26 (2004) · Zbl 1080.54030 [4] Valero, O., On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6, 2, 229-240 (2005) · Zbl 1087.54020 [5] Altun, I.; Sola, F.; Simsek, H., Generalized contractions on partial metric spaces, Topology Appl., 157, 18, 2778-2785 (2010) · Zbl 1207.54052 [6] Altun, I.; Erduran, A., Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), Article ID 508730, 10 pages · Zbl 1207.54051 [7] Alber, Ya. I.; Guerre-Delabriere, S., Principle of weakly contractive maps in Hilbert space, (Gohberg, I.; Lyubich, Yu., New Results in Operator Theory, Advances and Appl., vol. 98 (1997), Birkhäuser: Birkhäuser Basel), 7-22 · Zbl 0897.47044 [8] Rhoades, B. E., Some theorems on weakly contractive maps, Nonlinear Anal., 47, 4, 2683-2693 (2001) · Zbl 1042.47521 [9] Boyd, D. W.; Wong, S. W., On nonlinear contractions, Proc. Amer. Math. Soc., 20, 458-464 (1969) · Zbl 0175.44903 [10] Hussain, N.; Jungck, G., Common fixed point and invariant approximation results for noncommuting generalized \((f, g)\)-nonexpansive maps, J. Math. Anal. Appl., 321, 851-861 (2006) · Zbl 1106.47048 [11] Song, Y., Coincidence points for noncommuting f-weakly contractive mappings, Int. J. Comput. Appl. Math. (IJCAM), 2, 1, 17-26 (2007) [12] Song, Y.; Xu, S., A note on common fixed-points for Banach operator pairs, Int. J. Contemp. Math. Sci., 2, 1163-1166 (2007) · Zbl 1151.41311 [13] Zhang, Q.; Song, Y., Fixed point theory for generalized \(\varphi \)-weak contractions, Appl. Math. Lett., 22, 1, 75-88 (2009) · Zbl 1163.47304 [14] Păcurar, M.; Rus, I. A., Fixed point theory for cyclic \(\varphi \)-contractions, Nonlinear Anal., 72, 3-4, 1181-1187 (2010) · Zbl 1191.54042 [15] Karapınar, E., Fixed point theory for cyclic weak \(\phi \)-contraction, Appl. Math. Lett., 24, 6, 822-825 (2011) · Zbl 1256.54073 [16] Abdeljawad, T.; Karapınar, E., Quasicone metric spaces and generalizations of Caristi Kirk’s theorem, Fixed Point Theory Appl. (2009), 9 pages · Zbl 1197.54051 [17] Binayak, S.; Choudhury, P.; Konar, B. E.; Rhoades, N., Metiya fixed point theorems for generalized weakly contractive mappings, Nonlinear Anal., 74, 6, 2116-2126 (2011) · Zbl 1218.54036 [18] Jeong, G. S.; Rhoades, B. E., Maps for which \(F(T^n) = F(T)\), Fixed Point Theory Appl., 6, 72-105 (2006) · Zbl 1147.47041 [19] Jeong, G. S.; Rhoades, B. E., More Maps for which \(F(T^n) = F(T)\), Demonstratio Math., 40, 671-680 (2007) · Zbl 1147.47041 [20] Abdeljawad, T.; Karapınar, E.; Taş, K., Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., 24, 11, 1900-1904 (2011) · Zbl 1230.54032 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.