zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some fixed point results on a metric space with a graph. (English) Zbl 1237.54042
The main results of this paper (Theorems 2.1--2.4) deal with the stability (not explicitly called so) for the Picard iteration associated to $G$-contractions or $G$-nonexpansive mappings defined on a metric space endowed with a graph $G$.

54H25Fixed-point and coincidence theorems in topological spaces
54E40Special maps on metric spaces
05C63Infinite graphs
47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
Full Text: DOI
[1] S.M.A. Aleomraninejad, Sh. Rezapour, N. Shahzad, Convergence of an iterative scheme for multifunctions, J. Fixed Point Theory Appl. (2011), doi:10.1007/s11748-011-0046-z, in press. · Zbl 1282.47072
[2] Beg, I.; Butt, A. R.; Radojević, S.: The contraction principle for set valued mappings on a metric space with a graph, Comput. math. Appl. 60, 1214-1219 (2010) · Zbl 1201.54029 · doi:10.1016/j.camwa.2010.06.003
[3] De Blasi, F. S.; Myjak, J.; Reich, S.; Zaslavski, A. J.: Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-valued var. Anal. 17, 97-112 (2009) · Zbl 1183.47055 · doi:10.1007/s11228-009-0104-5
[4] Diestel, R.: Graph theory, (2000) · Zbl 0945.05002
[5] Echenique, F.: A short and constructive proof of Tarski’s fixed point theorem, Internat. J. Game theory 33, No. 2, 215-218 (2005) · Zbl 1071.91002 · doi:10.1007/s001820400192
[6] Espinola, R.; Kirk, W. A.: Fixed point theorems in R-trees with applications to graph theory, Topology appl. 153, 1046-1055 (2006) · Zbl 1095.54012 · doi:10.1016/j.topol.2005.03.001
[7] Gwozdz-Lukawska, G.; Jachymski, J.: IFS on a metric space with a graph structure and extensions of the kelisky-rivlin theorem, J. math. Anal. appl. 356, 453-463 (2009) · Zbl 1171.28002 · doi:10.1016/j.jmaa.2009.03.023
[8] Jachymski, J.: The contraction principle for mappings on a metric space with a graph, Proc. amer. Math. soc. 136, No. 4, 1359-1373 (2008) · Zbl 1139.47040
[9] Kelisky, R. P.; Rivlin, T. J.: Iterates of Bernstein polynomials, Pacific J. Math. 21, 511-520 (1967) · Zbl 0177.31302
[10] Ran, A. C. M.; Reurings, M. C. B.: A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. amer. Math. soc. 132, No. 5, 1435-1443 (2003) · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4
[11] Reich, S.; Zaslavski, A. J.: Convergence of inexact iterative schemes for nonexpansive set-valued mappings, Fixed point theory appl. (2010) · Zbl 1214.47074 · doi:10.1155/2010/518243
[12] Reich, S.; Zaslavski, A. J.: Approximating fixed points of contractive set-valued mappings, Commun. math. Anal. 8, 70-78 (2010) · Zbl 1171.47056
[13] Reich, S.; Zaslavski, A. J.: Existence and approximation of fixed points for set-valued mappings, Fixed point theory appl. (2010) · Zbl 1189.54037 · doi:10.1155/2010/351531
[14] Rus, I. A.: Iterates of Bernstein operators, via contraction principle, J. math. Anal. appl. 292, 259-261 (2004) · Zbl 1056.41004 · doi:10.1016/j.jmaa.2003.11.056
[15] Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness, Proc. amer. Math. soc. 136, 1861-1869 (2008) · Zbl 1145.54026 · doi:10.1090/S0002-9939-07-09055-7
[16] Suzuki, T.: A new type of fixed point theorem in metric space, Nonlinear anal. 71, 5313-5317 (2009) · Zbl 1179.54071 · doi:10.1016/j.na.2009.04.017