×

Hamiltonian approach to nonlinear oscillators. (English) Zbl 1237.70036

Summary: A Hamiltonian approach to nonlinear oscillators is suggested. A conservative oscillator always admits a Hamiltonian invariant, \(H\), which keeps unchanged during oscillation. This property is used to obtain approximate frequency-amplitude relationship of a nonlinear oscillator with acceptable accuracy. Two illustrating examples are given to elucidate the solution procedure.

MSC:

70H05 Hamilton’s equations
70K75 Nonlinear modes
70K30 Nonlinear resonances for nonlinear problems in mechanics
49S05 Variational principles of physics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] He, J. H., Chaos Solitons Fractals, 34, 1430 (2007) · Zbl 1152.34327
[2] He, J. H., Int. J. Mod. Phys. B, 22, 3487 (2008)
[3] Kaya, M. O.; Demirbag, S. A.; Zengin, F. O., Math. Problems Eng., 2009, 450862 (2009) · Zbl 1188.34012
[4] Demirbag, S. A.; Kaya, M. O.; Zengin, F. O., Int. J. Nonlin. Sci. Num., 10, 27 (2009)
[5] Tao, Z. L., Phys. Scripta, 78, 015004 (2008)
[6] Shou, D. H., Phys. Scripta, 77, 045006 (2008) · Zbl 1336.65127
[7] He, J. H., Mech. Res. Commun., 29, 107 (2002) · Zbl 1048.70011
[8] Jamshidi, N.; Ganji, D. D., Curr. Appl. Phys., 10, 484 (2010)
[9] Mehdipour, I.; Ganj, D. D.; Mozaffari, M., Curr. Appl. Phys., 10, 104 (2010)
[10] Ganji, D. D., J. Zhejiang Univ. Science A, 10, 1263 (2009) · Zbl 1354.65110
[11] Afrouzi, G. A.; Ganji, D. D.; Talarposhti, R. A., Int. J. Nonlin. Sci. Num., 10, 301 (2009)
[12] Ganji, S. S.; Ganji, D. D.; Ganji, Z. Z., Acta Appl. Math., 106, 79 (2009) · Zbl 1241.34049
[13] Ganji, S. S.; Ganji, D. D.; Karimpour, S., Int. J. Mod. Phys. B, 23, 461 (2009) · Zbl 1165.74325
[14] Zhang, H. L.; Xu, Y. G.; Chang, J. R., Int. J. Nonlin. Sci. Num., 10, 207 (2009)
[15] Oziz, T.; Yildirim, A., Comput. Math. Applicat., 54, 1184 (2007) · Zbl 1147.34321
[16] He, J. H., Int. J. Nonlin. Sci. Num., 9, 207 (2008)
[17] Zeng, D. Q.; Lee, Y. Y., Int. J. Nonlin. Sci. Num., 10, 1361 (2009)
[18] Zeng, D. Q., Chaos Solitons Fractals, 42, 2885 (2009) · Zbl 1198.65159
[19] He, J. H., Int. J. Nonlin. Sci. Num., 9, 211 (2008)
[20] Ganji, S. S.; Ganji, D. D.; Babazadeh, H., Math. Meth. Appl. Sci., 33, 157 (2010) · Zbl 1387.34053
[21] Ren, Z. F.; Liu, G. Q.; Kang, Y. X., Phys. Scripta, 80, 045003 (2009)
[22] Belendez, A., Int. J. Nonlin. Sci. Num., 10, 13 (2009) · Zbl 1401.34038
[23] Ren, Z. F.; He, J. H., Phys. Lett. A, 373, 3749 (2009) · Zbl 1233.70009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.