Lee, Y. Y.; Leung, A. Y. T.; Zhu, B. Structural-electrical-coupled formulation for the free vibration of a piezoelectric-laminated plate using the analytical arbitrary quadrilateral \(p\) element. (English) Zbl 1237.74180 Abstr. Appl. Anal. 2012, Article ID 290461, 14 p. (2012). Summary: An analytical quadrilateral \(p\) element is developed for solving the free vibrations of piezoelectric-laminated plates. The formulations of the displacement and strain fields are based on first-order shear deformation plate theory. The coupling effect between the electrical and stress fields is also considered. The Legendre orthogonal polynomials are used as the element interpolation functions, and the analytical integration technique is adopted. It is found that the present \(p\) element method gives high numerical precision results, fast and monotonic convergence rate. In the numerical cases, the effects of the number of hierarchical terms and mesh size on the convergence rate are investigated. Examples of square plates with different displacement and potential boundary conditions are studied. In the comparisons, the solutions of the present element are in good agreement with those obtained from other classical and finite element methods. MSC: 74S05 Finite element methods applied to problems in solid mechanics 74H45 Vibrations in dynamical problems in solid mechanics 74F15 Electromagnetic effects in solid mechanics 74E30 Composite and mixture properties 74K20 Plates Software:MUL2 × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] A. Borisovich and J. Janczewska, “Stable and unstable bifurcation in the von Kármán problem for a circular plate,” Abstract and Applied Analysis, vol. 2005, no. 8, pp. 889-899, 2005. · Zbl 1090.74022 · doi:10.1155/AAA.2005.889 [2] M. L. Santos, J. Ferreira, and C. A. Raposo, “Existence and uniform decay for a nonlinear beam equation with nonlinearity of Kirchhoff type in domains with moving boundary,” Abstract and Applied Analysis, vol. 2005, no. 8, pp. 901-919, 2005. · Zbl 1092.35068 · doi:10.1155/AAA.2005.901 [3] J. A. Esquivel-Avila, “Dynamic analysis of a nonlinear Timoshenko equation,” Abstract and Applied Analysis, Article ID 724815, 36 pages, 2011. · Zbl 1217.35184 · doi:10.1155/2011/724815 [4] Y. X. Li and H. Yang, “An existence and uniqueness result for a bending beam equation without growth restriction,” Abstract and Applied Analysis, vol. 2010, Article ID 694590, 9 pages, 2010. · Zbl 1360.34044 · doi:10.1155/2010/694590 [5] M. Grasselli, V. Pata, and G. Prouse, “Longtime behavior of a viscoelastic Timoshenko beam,” Discrete and Continuous Dynamical Systems A, vol. 10, no. 1-2, pp. 337-348, 2004. · Zbl 1061.74012 · doi:10.3934/dcds.2004.10.337 [6] J. E. Muñoz Rivera and R. Racke, “Global stability for damped Timoshenko systems,” Discrete and Continuous Dynamical Systems A, vol. 9, no. 6, pp. 1625-1639, 2003. · Zbl 1047.35023 · doi:10.3934/dcds.2003.9.1625 [7] E. Carrera, “An improved reissner-mindlin-type model for the electromechanical analysis of multilayered plates including piezo-layers,” Journal of Intelligent Material Systems and Structures, vol. 8, no. 3, pp. 232-248, 1997. · doi:10.1177/1045389X9700800305 [8] E. Carrera and M. Boscolo, “Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates,” International Journal for Numerical Methods in Engineering, vol. 70, no. 10, pp. 1135-1181, 2007. · Zbl 1194.74373 · doi:10.1002/nme.1901 [9] E. Carrera, S. Brischetto, and P. Nali, “Variational statements and computational models for multifield problems and multilayered structures,” Mechanics of Advanced Materials and Structures, vol. 15, no. 3-4, pp. 182-198, 2008. · doi:10.1080/15376490801907657 [10] E. Carrera and P. Nali, “Mixed piezoelectric plate elements with direct evaluation of transverse electric displacement,” International Journal for Numerical Methods in Engineering, vol. 80, no. 4, pp. 403-424, 2009. · Zbl 1176.74176 · doi:10.1002/nme.2641 [11] E. Carrera and P. Nali, “Multilayered plate elements for the analysis of multifield problems,” Finite Elements in Analysis and Design, vol. 46, no. 9, pp. 732-742, 2010. · doi:10.1016/j.finel.2010.04.001 [12] E. Carrera, S. Brischetto, and P. Nali, Plates and Shells for Smart Structures, John Wiley and Sons, New York, NY, USA, 2011. · Zbl 1241.74001 [13] E. Carrera, S. Brischetto, and M. Cinefra, “Variable kinematics and advanced variational statements for free vibrations analysis of piezoelectric plates and shells,” Computer Modeling in Engineering and Sciences, vol. 65, no. 3, pp. 259-341, 2010. · Zbl 1231.74156 · doi:10.3970/cmes.2010.065.259 [14] S. Brischetto and E. Carrera, “Coupled thermo-mechanical analysis of one-layered and multilayered plates,” Composite Structures, vol. 92, no. 8, pp. 1793-1812, 2010. · Zbl 1231.74155 · doi:10.1016/j.compstruct.2010.01.020 [15] E. Carrera, A. Büttner, and P. Nali, “Mixed elements for the analysis of anisotropic multilayered piezoelectric plates,” Journal of Intelligent Material Systems and Structures, vol. 21, no. 7, pp. 701-717, 2010. · doi:10.1177/1045389X10364864 [16] A. Caboussat and R. Glowinski, “Numerical solution of a variational problem arising in stress analysis: the vector case,” Discrete and Continuous Dynamical Systems A, vol. 27, no. 4, pp. 1447-1472, 2010. · Zbl 1387.74105 · doi:10.3934/dcds.2010.27.1447 [17] C. Thai-Hoang, N. Nguyen-Thanh, H. Nguyen-Xuan, and T. Rabczuk, “An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates,” Applied Mathematics and Computation, vol. 217, no. 17, pp. 7324-7348, 2011. · Zbl 1415.74048 · doi:10.1016/j.amc.2011.02.024 [18] R. Sharma, R. Bhargava, and I. V. Singh, “Combined effect of magnetic field and heat absorption on unsteady free convection and heat transfer flow in a micropolar fluid past a semi-infinite moving plate with viscous dissipation using element free Galerkin method,” Applied Mathematics and Computation, vol. 217, no. 1, pp. 308-321, 2010. · Zbl 1277.76044 · doi:10.1016/j.amc.2010.05.062 [19] M. Sajid, R. Mahmood, and T. Hayat, “Finite element solution for flow of a third grade fluid past a horizontal porous plate with partial slip,” Computers and Mathematics with Applications, vol. 56, no. 5, pp. 1236-1244, 2008. · Zbl 1155.76359 · doi:10.1016/j.camwa.2008.02.025 [20] Z. Wang and B. Hu, “Research of combined hybrid method applied in the Reissner-Mindlin plate model,” Applied Mathematics and Computation, vol. 182, no. 1, pp. 49-66, 2006. · Zbl 1103.74054 · doi:10.1016/j.amc.2006.03.033 [21] C.-S. Chen, C.-P. Fung, and R.-D. Chien, “A further study on nonlinear vibration of initially stressed plates,” Applied Mathematics and Computation, vol. 172, no. 1, pp. 349-367, 2006. · Zbl 1137.74369 · doi:10.1016/j.amc.2005.02.007 [22] A. Benjeddou and J. F. Deü, “A two-dimensional closed-from solution for the free-vibrations analysis of piezoelectric sandwich plates,” International Journal of Solids and Structures, vol. 39, no. 6, pp. 1463-1486, 2002. · Zbl 1046.74018 · doi:10.1016/S0020-7683(01)00287-6 [23] V. M. Franco Correia, M. A. Aguiar Gomes, A. Suleman, C. M. Mota Soares, and C. A. Mota Soares, “Modelling and design of adaptive composite structures,” Computer Methods in Applied Mechanics and Engineering, vol. 185, no. 2-4, pp. 325-346, 2000. · Zbl 0981.74010 · doi:10.1016/S0045-7825(99)00265-0 [24] P. Heyliger and D. A. Saravanos, “Exact free-vibration analysis of laminated plates with embedded piezoelectric layers,” Journal of the Acoustical Society of America, vol. 98, no. 3, pp. 1547-1557, 1995. · doi:10.1121/1.413420 [25] H. J. Ding and W. Q. Chen, Three Dimensional Problems of Piezoelectricity, Nova Science Publishers, New York, NY, USA, 2001. [26] D. A. Saravanos, P. R. Heyliger, and D. A. Hopkins, “Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates,” International Journal of Solids and Structures, vol. 34, no. 3, pp. 359-378, 1997. · Zbl 0946.74519 · doi:10.1016/S0020-7683(96)00012-1 [27] K. Y. Lam, X. Q. Peng, G. R. Liu, and J. N. Reddy, “A finite-element model for piezoelectric composite laminates,” Smart Materials and Structures, vol. 6, no. 5, pp. 583-591, 1997. · doi:10.1088/0964-1726/6/5/009 [28] X. Q. He, T. Y. Ng, S. Sivashanker, and K. M. Liew, “Active control of FGM plates with integrated piezoelectric sensors and actuators,” International Journal of Solids and Structures, vol. 38, no. 9, pp. 1641-1655, 2001. · Zbl 1012.74047 · doi:10.1016/S0020-7683(00)00050-0 [29] M. A. Ramos Loja, C. M. Mota Soares, and C. A. Mota Soares, “Higher-order B-spline finite strip model for laminated adaptive structures,” Composite Structures, vol. 52, no. 3-4, pp. 419-427, 2001. · doi:10.1016/S0263-8223(01)00032-0 [30] M. A. R. Loja, J. Infante Barbosa, C. M. Mota Soares, and C. A. Mota Soares, “Analysis of piezolaminated plates by the spline finite strip method,” Computers and Structures, vol. 79, no. 26-28, pp. 2321-2333, 2001. · Zbl 1277.74072 · doi:10.1016/S0045-7949(01)00065-7 [31] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, McGraw-Hill, New York, NY, USA, 4th edition, 1989. · Zbl 0991.74002 [32] A. Houmat, “Triangular Fourier p element for the analysis of membrane vibrations,” Journal of Sound and Vibration, vol. 230, no. 1, pp. 31-43, 2000. · doi:10.1006/jsvi.1999.2613 [33] K. S. Woo, C. H. Hong, P. K. Basu, and C. G. Seo, “Free vibration of skew Mindlin plates by p-version of F.E.M,” Journal of Sound and Vibration, vol. 268, no. 4, pp. 637-656, 2003. · doi:10.1016/S0022-460X(02)01536-5 [34] A. Y. T. Leung and B. Zhu, “Comments on ‘Free vibration of skew Mindlin plates by \rho -version of F.E.M.’,” Journal of Sound and Vibration, vol. 278, no. 3, pp. 699-703, 2004. · doi:10.1016/j.jsv.2003.12.022 [35] A. Y. T. Leung and J. K. W. Chan, “Fourier p element for the analysis of beams and plates,” Journal of Sound and Vibration, vol. 212, no. 1, pp. 179-185, 1998. · doi:10.1006/jsvi.1997.1423 [36] A. Y. T. Leung, B. Zhu, J. Zheng, and H. Yang, “Analytic trapezoidal Fourier p element for vibrating plane problems,” Journal of Sound and Vibration, vol. 271, no. 1-2, pp. 67-81, 2004. · doi:10.1016/S0022-460X(03)00263-3 [37] A. Y. T. Leung, B. Zhu, J. Zheng, and H. Yang, “A trapezoidal Fourier p element for membrane vibrations,” Thin-Walled Structures, vol. 41, no. 5, pp. 479-491, 2003. · doi:10.1016/S0263-8231(02)00117-9 [38] A. Y. T. Leung and B. Zhu, “Transverse vibration of thick polygonal plates using analytically integrated trapezoidal Fourier p element,” Computers and Structures, vol. 82, no. 2-3, pp. 109-119, 2004. · doi:10.1016/j.compstruc.2003.10.002 [39] A. Y. T. Leung, C. Xiao, B. Zhu, and S. Yuan, “Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p element,” Composite Structures, vol. 68, no. 2, pp. 167-175, 2005. · doi:10.1016/j.compstruct.2004.03.011 [40] A. Houmat, “Hierarchical finite element analysis of the vibration of membranes,” Journal of Sound and Vibration, vol. 201, no. 4, pp. 465-472, 1997. · doi:10.1006/jsvi.1996.0779 [41] J. N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, New York, NY, USA, 1996. [42] H. J. Ding, W. Q. Chen, and R. Q. Xu, “New state space formulations for transversely isotropic piezoelasticity with application,” Mechanics Research Communications, vol. 27, no. 3, pp. 319-326, 2000. · Zbl 0976.74017 · doi:10.1016/S0093-6413(00)00098-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.