zbMATH — the first resource for mathematics

Sediment transport models in shallow water equations and numerical approach by high order finite volume methods. (English) Zbl 1237.76082
Summary: This paper is concerned with the numerical approximation of bedload sediment transport due to water evolution. For the hydrodynamical component we consider shallow water equations. The morphodynamical component is defined by a continuity equation, which is defined in function of the solid transport discharge. We present several deterministic models, such as E. Meyer-Peter and R. Müller, L.C. Van Rijn or A.J. Grass model. We also present an unified definition for the solid transport discharge, and we compare with Grass model. Both components define a coupled system of equations that can be rewrite as a non-conservative hyperbolic system. To discretize it, we consider finite volume methods with or without flux limiters and high order state reconstructions. Finally we present several tests, where we observe numerically the order of the numerical schemes. Comparisons with analytical solutions and experimental data are also presented.

76M12 Finite volume methods applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
PDF BibTeX Cite
Full Text: DOI
[1] Alouges F, Merlet B. Approximate shock curves of non-conservative hyperbolic equations in one space dimension. Preprint, available at <http://mahery.math.u-psud.fr/alouges/full_publi.html>. · Zbl 1066.35059
[2] Alcrudo, F.; Benkhaldoun, F., Exact solutions to the Riemann problem of the shallow water equations with a bottom step, Comput fluids, 30, 643-671, (2001) · Zbl 1048.76008
[3] Audusse, E.; Bouchut, F.; Bristeau, M.O.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J sci comp, 25, 6, 2050-2065, (2004) · Zbl 1133.65308
[4] Bermúdez, A.; Vázquez, M.E., Upwind methods for hyperbolic conservation laws with source terms, Comput fluids, 23, 8, 1049-1071, (1994) · Zbl 0816.76052
[5] Bianchini, S.; Bressan, A., Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann math, 161, 1, 223-342, (2005) · Zbl 1082.35095
[6] Bouchut, F., Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, (2004), Birkhäuser · Zbl 1086.65091
[7] Bouchut, F.; James, F., One-dimensional transport equations with discontinuous coefficients, Nonlinear anal TMA, 32, 891-933, (1998) · Zbl 0989.35130
[8] Brufau Pilar. Simulación bidimensional de flujos hidrodinámicos transitorios en geometrías irregulares. Thesis doctoral. Universidad de Zaragoza; 2000.
[9] Castro, M.J.; Parés, J.MacíasyC., A Q-scheme for a class of systems of coupled conservation laws with source term. application to a two-layer 1-D shallow water system, Math mod numer anal, 35, 1, 107-127, (2001) · Zbl 1094.76046
[10] Castro, M.J.; Gallardo, J.M.; Parés, C., High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow water systems, Math comput, 75, 1103-1134, (2006) · Zbl 1096.65082
[11] Cauret, J.J.; Colombeau, J.F.; LeRoux, A.Y., Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations, J math anal appl, 139, 552-573, (1989) · Zbl 0691.35057
[12] Chacón, T.; Domínguez, A.; Fernández, E.D., A family of stable numerical solvers for shallow water equations with source terms, Comp meth appl mech eng, 192, 203-225, (2003) · Zbl 1083.76557
[13] Chacón, T.; Domínguez, A.; Fernández, E.D., Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to the shallow water equations, CR acad sci Paris, ser I, 338 8, 5-90, (2004) · Zbl 1038.65073
[14] Chien, N., The present status of research on sediment transport, Trans ASCE, 121S, 833-868, (1956)
[15] Colombeau, J.F.; Heibig, A., Nonconservative products in bounded variation functions, SIAM J math anal, 23, 4, 941-949, (1992) · Zbl 0757.35042
[16] Dal Maso, G.; LeFloch, P.G.; Murat, F., Definition and weak stability of nonconservative products, J math pures appl, 74, 483-548, (1995) · Zbl 0853.35068
[17] Duboys; Meyer-Peter, E., Etudes du régime du rhone et de l’action exercé par LES eaux sur un lit á fond de graviers indéfiniment affouillable, Ann ponts et chaussées, ser, 5, 18, 141-195, (1979)
[18] Einstein, H.A., Formulas for the transportation of bed load, Trans ASCE, 107, 561-575, (1942)
[19] Einstein HA. The bed load function for sediment transport in open channel flows, Technical Bulletin no. 1026. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service; 1950.
[20] Fracarollo, L.; Capart, H.; Zech, Y., A Godunov method for the computation of erosional shallow water transients, Int J numer meth fluids, 41, 951-976, (2003) · Zbl 1028.76028
[21] Godlewski, E.; Raviart, P.A., Numerical approximation of hyperbolic systems of conservation laws, (1996), Springer-Verlag New York · Zbl 0860.65075
[22] Gosse, L., A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comp math appl, 39, 135-159, (2000) · Zbl 0963.65090
[23] Gosse, L., A well-balanced scheme using non-conservative products designed for hyperbolic system of conservation laws with source terms, Math mod meth appl sci, 11, 339-365, (2001) · Zbl 1018.65108
[24] Gottlieb, S.; W Shu, C., Total variation diminishing runge – kutta schemes, Math comput, 67, 73-85, (1998) · Zbl 0897.65058
[25] Grass AJ. Sediments transport by waves and currents. SERC London Cent Mar Technol, Report No. FL29; 1981.
[26] Greenberg, J.M.; LeRoux, A.Y., A well balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J numer anal, 33, 1-16, (1996) · Zbl 0876.65064
[27] Greenberg, J.M.; LeRoux, A.Y.; Baraille, R.; Noussair, A., An introduction to continuum mechanics, (1981), Academic Press
[28] Hu, Changqing; Shu, C.W., Weighted essentially non-oscillatory schemes on triangular meshes, J comput phys, 150, 97-127, (1999) · Zbl 0926.65090
[29] Hudson J. Numerical techniques for morphodynamic modelling. Thesis doctoral. University of Whiteknights; 2001.
[30] Jiang, G.; Shu, C.W., Efficient implementation of weighted ENO schemes, J comput phys, 126, 202-228, (1996) · Zbl 0877.65065
[31] Julien, P.Y., Erosion and sedimentation, (1998), Cambridge University Press
[32] Kalinske, A.A., Criteria for determining sand transport by surface creep and saltation, Trans AGU, 23, 2, 639-643, (1942)
[33] Kalinske, A.A., Movement of sediment as bed load in rivers, Trans AGU, 28, 4, 615-620, (1947)
[34] Kurganov, A.; Levy, D., Central-upwind schemes for the Saint-Venant system, Math mod numer anal, 36, 397-425, (2002) · Zbl 1137.65398
[35] LeFloch, P.G.; Tzavaras, A.E., Representation and weak limits and definition of nonconservative products, SIAM J math anal, 30, 1309-1342, (1999) · Zbl 0939.35115
[36] LeVeque, R., Numerical methods for conservations laws, (1990), Birkhauser Verlag Zurich
[37] LeVeque, R., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J comp phys, 146, 346-365, (1998) · Zbl 0931.76059
[38] Meyer-Peter E, Müller R. Formulas for bed-load transport. Report on 2nd meeting on international association on hydraulic structures research. Stockholm; 1948. p. 39-64.
[39] Nielsen, P., Coastal bottom boundary layers and sediment transport, Advanced series on Ocean engineering, vol. 4, (1992), World Scientific Publishing Singapore
[40] Parés, C.; Castro, M.J., On the well-balanced property of roe method for nonconservative hyperbolic systems. applications to shallow water systems, Esaim: m2an, 38, 5, 821-852, (2004) · Zbl 1130.76325
[41] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J num anal, 44, 1, 300-321, (2006) · Zbl 1130.65089
[42] González Enrique Peña. Estudio numérico y experimental del transporte de sedimentos en cauces aluviales, Thesis Doctoral. Universidade da Coruña. Grupo de Ingeniería del agua y del medio ambiente; 2002.
[43] Perthame, B.; Simeoni, C., A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38, 4, 201-231, (2001) · Zbl 1008.65066
[44] Perthame, B.; Simeoni, C., Convergence of the upwind interface source method for hyperbolic conservation laws, () · Zbl 1008.65066
[45] Raymond, J.P., A new definition of nonconservative products and weak stability results, Boll un mat ital B(7), 10, 3, 681-699, (1996) · Zbl 0892.46019
[46] Richardson EV, Simons DB, Julien PY. Highways in the river environment. Design and training manual for US Department of Transportation, Federal Highway Administration, publication no. FHWA-HI-90-016. Washington, DC; 1990.
[47] Roe, P.L., Upwinding difference schemes for hyperbolic conservation laws with source terms, (), 41-51
[48] Simons, D.B.; Senturk, F., Sediment transport technology, (1977), Water Resources Pub Littleton, Colo
[49] Shu CW. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws ICASE Report: 97-65; 1997.
[50] Shu, C.W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J comput phys, 77, 439-471, (1998) · Zbl 0653.65072
[51] Soulsby, R., Dynamics of marine sands. A manual for practical applications, (1997), Thomas Telford Publications, Thomas Telford Services Ltd
[52] Toro, E.F., Shock-capturing methods for free-surface shallow flows, (2001), Wiley · Zbl 0996.76003
[53] Toumi, I., A weak formulation of roe approximate Riemann solver, J comput phys, 102, 2, 360-373, (1992) · Zbl 0783.65068
[54] Van Rijn, L.C., Sediment transport (I): bed load transport, J hydraul div, proc ASCE, 110, 1431-1456, (1984)
[55] Van Rijn, L.C., Sediment transport (II): suspended load transport, J hydraul div, proc ASCE, 111, 1613-1641, (1984)
[56] Van Rijn, L.C., Sediment transport (III): bed forms and alluvial roughness, J hydraul div, proc ASCE, 112, 1733-1754, (1984)
[57] Vázquez-Cendón ME. Estudio de Esquemas Descentrados para su Aplicación a las Leyes de Conservación Hiperbólicas con Términos Fuente. Thesis doctoral. Universidad de Santiago de Compostela; 1994.
[58] Vázquez-Cendón, M.E., Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J comput phys, 148, 497-526, (1999) · Zbl 0931.76055
[59] Volpert, A.I., The space BV and quasilinear equations, Math USSR sbornik, 73, 115, 225-267, (1967)
[60] Yalin, M.S.; Karahan, E., Inception of sediment transport, J hydraul div ASCE, 105, 11, 133-143, (1979)
[61] Zhou, J.G.; Causon, D.M.; Mingham, C.G.; Ingram, D.M., The surface gradient method for the treatment of source terms in the shallow-water equations, J comput phys, 168, 1-25, (2001) · Zbl 1074.86500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.