zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Spectral method for solution of the fractional transport equation. (English) Zbl 1237.82041
Summary: The Chebyshev polynomials expansion method is applied to find both an analytical solution of the fractional transport equation in the one-dimensional plane geometry and its numerical approximations. The idea of the method is in reducing of the fractional transport equation to a system of the linear fractional differential equations for the unknown coefficients of the Chebyshev polynomials expansion. The obtained system of equations is then solved by using the operational method for the Caputo fractional derivative.

82C70Transport processes (time-dependent statistical mechanics)
Full Text: DOI
[1] Bogolyubov, N. N.: Problems in the dynamical theory of statistical physics. (1946) · Zbl 0063.00497
[2] Hopf, E.: Mathematical problems of radiative equilibrium. (1934) · Zbl 0009.33004
[3] Davison, B.: Neutron transport, Oxford. (1957) · Zbl 0077.22505
[4] Chandrasekhar, S.: Radiative transfer. (1960) · Zbl 0037.43201
[5] Duderstadt, J. J.; Martin, W. R.: Transport theory. (1975) · Zbl 0407.76001
[6] Garcia, R. D. M.: A review of the facile (FN) method in particle transport theory. Transport theory and statistical physics 14, 39 (1985) · Zbl 0624.65142
[7] Ganapol, B. D.; Kornreich, D. E.; Dahl, J. A.; Nigg, D. W.; Jahshan, S. N.; Wemple, C. A.: The searchlight problem for neutrons in a semi-infinite medium. Nucl. sci. Engr. 118, 38 (1994)
[8] Ganapol, B. D.: Distributed neutron sources in a semi-infinite medium. Nucl. sci. Engr. 110, 275 (1992) · Zbl 0765.65124
[9] Barros, R. C.; Larsen, E. W.: Transport theory and statistical physics. 20 (1991)
[10] Barros, R. C.; Larsen, E. W.: A numerical method for one-group slab geometry discrete ordinate problem without spatial truncation error. Nucl. sci. Engr. 104, 199 (1990)
[11] Vilhena, M. T.; Barichello, L. B.: A new analytical approach to solve the neutron transport equation. Kerntechnik 56, 334 (1991)
[12] Barichello, L. B.; Vilhena, M. T.: A general approach to one group one dimensional transport equation. Kerntechnik 58 (1993)
[13] Vilhena, M. T.; Streck, E. E.: An approximated analytical solution of the one-group neutron transport equation. Kerntechnik 58, 182 (1993)
[14] Cardona, A. V.; Vilhena, M. T.: A solution of linear transport equation using Walsh function and Laplace transform. Ann. nucl. Energ. 21, 495 (1994)
[15] Kadem, A.: Solving the one-dimensional neutron transport equation using Chebyshev polynomials and the sumudu transform. Anal. univ. Oradea, fasc. Math. 12, 153-171 (2005) · Zbl 1164.82331
[16] Cardona, A. V.; Vilhena, M. T.: Analytical solution for the AN approximation. Progr. nucl. Energy 31, 219 (1997)
[17] Barros, R. C.; Cardona, A. V.; Vilhena, M. T.: Analytical numerical methods applied to linear discontinuous angular approximations of the transport equation in slab geometry. Kerntechnik 61, 11 (1996)
[18] Seed, T. J.; Albrecht, R. W.: Application of Walsh functions to neutron transport problems--I. Theory. Nucl. sci. Eng. 60, 337 (1976)
[19] Kharroubi, M. M.: Mathematical topics in neutron transport theory. Series on advances in mathematics for applied sciences 46 (1997) · Zbl 0997.82047
[20] Gottlieb, D.; Orszag, S. A.: Numerical analysis of spectral method: theory and application. (1977) · Zbl 0412.65058
[21] Lewis, E. E.; Jr., W. F. Miller: Computational methods of neutron transport. (1984)
[22] Vilhena, M. T.; Barichello, L. B.; Zabadal, J.; Segatto, C. F.; Cardona, A. V.: General solution of one-dimensional approximations to the transport equation. Progr. nucl. Energy 33, 99 (1998)
[23] A. Kadem: Solving a transport equation using a fractional derivative and a Chebyshev polynomials, submitted. · Zbl 1190.45009
[24] A. Kadem and D. Baleanu: Fractional radiative equation within Chebyshev spectral approach, to appear in Comput. Math. Appl. · Zbl 1189.35359
[25] A. Kadem and D. Baleanu: Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation, to appear in Commun. Nonlin. Sci. Numer. Simul. · Zbl 1221.45008
[26] Jaffel, L. B.; Vidal-Madjar, A.: New developments in the discrete ordinate method for the resolution of the radiative transfer equation. Astron. astrophys. 220, 306-312 (1989)
[27] Ben Jaffel, L.; Vidal-Madjar, A.: A new method for the resolution of the radiative transfer equation in three-dimensional geometry. I--theory. Astrophys. J. 350, 801-818 (1990)
[28] Oldham, K.; Spanier, J.: The fractional calculus. (1974) · Zbl 0292.26011
[29] Podublny, I.: Fractional differential equations. (1999)
[30] Diethelm, K.; Ford, N.; Freed, A.; Luchko, Yu.: Algorithms for the fractional calculus: A selection of numerical methods. Comput. meth. Appl. mech. Eng. 194, 743-773 (2005) · Zbl 1119.65352
[31] Samko, G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[32] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations. 204 (2006) · Zbl 1092.45003
[33] Magin, R. L.: Fractional calculus in bioengineering. (2006)
[34] Hilfer, R.: Applications of fractional calculus in physics. (2000) · Zbl 0998.26002
[35] Luchko, Yu.; Gorenflo, R.: An operational method for solving fractional differential equation with the Caputo derivatives. Acta math. Vietnamica 24, No. 2, 207-233 (1999) · Zbl 0931.44003
[36] Achar, N.; Lorenzo, C. F.; Hartley, T. T.: Initialization and the Caputo fractional derivative. (2003) · Zbl 1138.26304
[37] Ortigueira, M. D.; Coito, F. J.: Initial conditions: what are we talking about?. Third IFAC workshop on fractional differentiation (05--07 November 2008)
[38] J. Sabatier, R. Malti, M. Merveillaut and A. Oustaloup: How to impose physically coherent initial conditions to a fractional system?, Commun. Nonlin. Sci. Numer. Simul., to appear 2009. · Zbl 1221.34019
[39] Craiem, D.; Magin, R. L.: Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Phys. biol. 7, No. 1, 013001 (2010)
[40] Jeon, J. H.; Metzler, R.: Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. rev. E 81, No. 2, 021103 (2010)
[41] Baleanu, D.: Fractional variational principles in action. Physica scripta 7136, 014006 (2009)
[42] Machado, J. A. T.; Silva, M. F.; Barbosa, R. S.; Jesus, J.; Reis, C. M.; Marcos, M. G.; Galhano, A. F.: Some applications of fractional calculus in engineering. Math. probl. Eng., 639801 (2010) · Zbl 1191.26004