zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential stabilization of neutral-type neural networks with interval nondifferentiable and distributed time-varying delays. (English) Zbl 1237.93140
Summary: The problem of exponential stabilization of neutral-type neural networks with various activation functions and interval nondifferentiable and distributed time-varying delays is considered. The interval time-varying delay function is not required to be differentiable. By employing new and improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, the stabilizability criteria are formulated in terms of a linear matrix inequalities. Numerical examples are given to illustrate and show the effectiveness of the obtained results.

MSC:
93D05Lyapunov and other classical stabilities of control systems
92B20General theory of neural networks (mathematical biology)
WorldCat.org
Full Text: DOI
References:
[1] A. Bellen, N. Guglielmi, and A. E. Ruehli, “Methods for linear systems of circuit delay differential equations of neutral type,” IEEE Transactions on Circuits and Systems. I, vol. 46, no. 1, pp. 212-216, 1999. · Zbl 0952.94015 · doi:10.1109/81.739268
[2] J. Cao, S. Zhong, and Y. Hu, “Global stability analysis for a class of neural networks with varying delays and control input,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1480-1490, 2007. · Zbl 1128.34046 · doi:10.1016/j.amc.2006.12.048
[3] B. Chen and J. Wang, “Global exponential periodicity and global exponential stability of a class of recurrent neural networks with various activation functions and time-varying delays,” Neural Networks, vol. 20, no. 10, pp. 1067-1080, 2007. · Zbl 1254.34114 · doi:10.1016/j.neunet.2007.07.007
[4] M. Ramesh and S. Narayanan, “Chaos control of Bonhoeffer-van der Pol oscillator using neural networks,” Chaos, Solitons and Fractals, vol. 12, no. 13, pp. 2395-2405, 2001. · Zbl 1004.37067 · doi:10.1016/S0960-0779(00)00200-9
[5] B. d. Vries and J. C. Principe, “The gamma model-a new neural model for temporal processing,” Neural Networks, vol. 5, no. 4, pp. 565-576, 1992.
[6] L. Li and L. Huang, “Global asymptotic stability of delayed neural networks with discontinuous neuron activations,” Neurocomputing, vol. 72, no. 16-18, pp. 3726-3733, 2009. · doi:10.1016/j.neucom.2009.05.016
[7] X. Nie and J. Cao, “Stability analysis for the generalized Cohen-Grossberg neural networks with inverse Lipschitz neuron activations,” Computers & Mathematics with Applications, vol. 57, no. 9, pp. 1522-1536, 2009. · Zbl 1186.34099 · doi:10.1016/j.camwa.2009.01.003
[8] I. Amri, D. Soudani, and M. Benrejeb, “Exponential stability and stabilizaion of linear systems with time varying delays,” in the 6th International Multi-Conference on Systems, Signals and Devices, pp. 1-6, 2009.
[9] V. N. Phat and H. Trinh, “Exponential stabilization of neural networks with various activation functions and mixed time-varying delays,” IEEE Transactions on Neural Networks, vol. 21, no. 7, pp. 1180-1184, 2010. · doi:10.1109/TNN.2010.2049118
[10] J. Qiu and J. Cao, “Delay-dependent robust stability of neutral-type neural networks with time delays,” Journal of Mathematical Control Science and Applications, vol. 1, pp. 179-188, 2007. · Zbl 1170.93364
[11] H. Wu, Y. Zhong, and H. Mai, “On delay-dependent exponential stability of neutral-type neural networks with interval time-varying delays,” in the International Conference on Artificial Intelligence and Computational Intelligence (AICI ’09), vol. 2, pp. 563-569, November 2009. · doi:10.1109/AICI.2009.134
[12] T. Botmart, P. Niamsup, and V. N. Phat, “Delay-dependent exponential stabilization for uncertain linear systems with interval non-differentiable time-varying delays,” Applied Mathematics and Computation, vol. 217, no. 21, pp. 8236-8247, 2011. · Zbl 1241.34080 · doi:10.1016/j.amc.2011.02.097
[13] O. M. Kwon and J. H. Park, “Exponential stability analysis for uncertain neural networks with interval time-varying delays,” Applied Mathematics and Computation, vol. 212, no. 2, pp. 530-541, 2009. · Zbl 1179.34080 · doi:10.1016/j.amc.2009.02.043
[14] C.-H. Lien, K.-W. Yu, Y.-F. Lin, Y.-J. Chung, and L.-Y. Chung, “Global exponential stability for uncertain delayed neural networks of neutral type with mixed time delays,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 38, no. 3, pp. 709-720, 2008. · doi:10.1109/TSMCB.2008.918564
[15] M. Liu, “Delayed standard neural network models for control systems,” IEEE Transactions on Neural Networks, vol. 18, no. 5, pp. 1376-1391, 2007. · doi:10.1109/TNN.2007.894084
[16] Z. Liu, S. C. Shih, and Q. Wang, “Global robust stabilizing control for a dynamic neural network system,” IEEE Transactions on Systems, Man, and Cybernetics A, vol. 39, no. 2, pp. 426-436, 2009. · doi:10.1109/TSMCA.2008.2010749
[17] R. Samidurai, S. M. Anthoni, and K. Balachandran, “Global exponential stability of neutral-type impulsive neural networks with discrete and distributed delays,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 1, pp. 103-112, 2010. · Zbl 1179.93143 · doi:10.1016/j.nahs.2009.08.004
[18] O. M. Kwon and J. H. Park, “Exponential stability of uncertain dynamic systems including state delay,” Applied Mathematics Letters, vol. 19, no. 9, pp. 901-907, 2006. · Zbl 1220.34095 · doi:10.1016/j.aml.2005.10.017
[19] P. T. Nam and V. N. Phat, “Robust exponential stability and stabilization of linear uncertain polytopic time-delay systems,” Journal of Control Theory and Applications, vol. 6, no. 2, pp. 163-170, 2008. · doi:10.1007/s11768-008-6104-4
[20] J. Feng, S. Xu, and Y. Zou, “Delay-dependent stability of neutral type neural networks with distributed delays,” Neurocomputing, vol. 72, no. 10-12, pp. 2576-2580, 2009. · doi:10.1016/j.neucom.2008.10.018
[21] R. Wang, H. Lei, and J. Wang, “A method of robust stabilization for the delay neural networks with nonlinear perturbations,” in 3rd International Conference on Genetic and Evolutionary Computing (WGEC ’09), pp. 502-505, October 2009. · doi:10.1109/WGEC.2009.126
[22] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, vol. 74 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992. · Zbl 0752.34039
[23] S.-I. Niculescu and B. Brogliato, “Force measurement time-delays and contact instability phenomenon,” European Journal of Control, vol. 5, no. 2-4, pp. 279-289, 1999. · Zbl 0936.93031 · doi:10.1016/S0947-3580(99)70163-9
[24] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay System, Birkhauser, Boston, Mass, USA, 2003. · Zbl 1039.34067
[25] K.-W. Yu and C.-H. Lien, “Stability criteria for uncertain neutral systems with interval time-varying delays,” Chaos, Solitons and Fractals, vol. 38, no. 3, pp. 650-657, 2008. · Zbl 1146.93366 · doi:10.1016/j.chaos.2007.01.002
[26] J. H. Park, “Further result on asymptotic stability criterion of cellular neural networks with time-varying discrete and distributed delays,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1661-1666, 2006. · Zbl 1154.92302 · doi:10.1016/j.amc.2006.06.005
[27] J. H. Park, “On global stability criterion of neural networks with continuously distributed delays,” Chaos, Solitons and Fractals, vol. 37, no. 2, pp. 444-449, 2008. · Zbl 1141.93054 · doi:10.1016/j.chaos.2006.09.021
[28] J. H. Park and H. J. Cho, “A delay-dependent asymptotic stability criterion of cellular neural networks with time-varying discrete and distributed delays,” Chaos, Solitons and Fractals, vol. 33, no. 2, pp. 436-442, 2007. · Zbl 1142.34379 · doi:10.1016/j.chaos.2006.01.015