zbMATH — the first resource for mathematics

Linear free divisors and Frobenius manifolds. (English) Zbl 1238.32022
Summary: We study linear functions on fibrations whose central fibre is a linear free divisor. We analyse the Gauß-Manin system associated to these functions, and prove the existence of a primitive and homogeneous form. As a consequence, we show that the base space of the semi-universal unfolding of such a function carries a Frobenius manifold structure.

32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
14B07 Deformations of singularities
58K60 Deformation of singularities
Full Text: DOI arXiv
[8] doi:10.1007/s002200050729 · Zbl 0976.53094 · doi:10.1007/s002200050729
[15] doi:10.1016/j.geomphys.2007.03.003 · Zbl 1127.53072 · doi:10.1016/j.geomphys.2007.03.003
[17] doi:10.1093/qmath/hah060 · Zbl 1119.32015 · doi:10.1093/qmath/hah060
[18] doi:10.1007/s11511-009-0035-x · Zbl 1213.53106 · doi:10.1007/s11511-009-0035-x
[19] doi:10.1007/BF01404452 · Zbl 0658.32005 · doi:10.1007/BF01404452
[21] doi:10.1007/s00220-008-0699-7 · Zbl 1197.53117 · doi:10.1007/s00220-008-0699-7
[22] doi:10.1007/BF02940860 · Zbl 0973.32014 · doi:10.1007/BF02940860
[24] doi:10.1007/BF02684889 · Zbl 0202.55102 · doi:10.1007/BF02684889
[28] doi:10.2307/1969740 · Zbl 0053.01402 · doi:10.2307/1969740
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.