zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel computer virus model and its dynamics. (English) Zbl 1238.34076
Summary: We propose a novel computer virus propagation model and study its dynamic behaviors; to our knowledge, this is the first time the effect of anti-virus ability has been taken into account in this way. In this context, we give the threshold for determining whether the virus dies out completely. Then, we study the existence of equilibria, and analyze their local and global asymptotic stability. Next, we find that, depending on the anti-virus ability, a backward bifurcation or a Hopf bifurcation may occur. Finally, we show that under appropriate conditions, bistable states may be around. Numerical results illustrate some typical phenomena that may occur in the virus propagation over computer network.

34C23Bifurcation (ODE)
34C60Qualitative investigation and simulation of models (ODE)
37N25Dynamical systems in biology
34D23Global stability of ODE
68M10Network design and communication of computer systems
68M11Internet topics
Full Text: DOI
[1] Cohen, F.: Computer virus: theory and experiments, Computers and security 6, 22-35 (1987)
[2] Kephart, J. O.; Hogg, T.; Huberman, B. A.: Dynamics of computational ecosystems, Physical review A 40, No. 1, 404-421 (1998)
[3] Wierman, J. C.; Marchette, D. J.: Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction, Computational statistics & data analysis 45, 3-23 (2004) · Zbl 05373937
[4] Piqueira, J. R. C.; Araujo, V. O.: A modified epidemiological model for computer viruses, Applied mathematics and computation 213, 355-360 (2009) · Zbl 1185.68133 · doi:10.1016/j.amc.2009.03.023
[5] Mishra, B. K.; Jha, N.: Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Applied mathematics and computation 190, 1207-1212 (2007) · Zbl 1117.92052 · doi:10.1016/j.amc.2007.02.004
[6] Mishra, B. K.; Jha, N.: SEIQRS model for the transmission of malicious objects in computer network, Applied mathematical modeling 34, 710-715 (2010) · Zbl 1185.68042 · doi:10.1016/j.apm.2009.06.011
[7] Mishra, B. K.; Pandey, S,k.: Fuzzy epidemic model for the transmission of worms in computer network, Nonlinear analysis: real world applications 11, 4335-4341 (2010) · Zbl 1203.94148 · doi:10.1016/j.nonrwa.2010.05.018
[8] Mishra, B. K.; Pandey, S. K.: Dynamic model of worms with vertical transmission in computer network, Applied mathematics and computation 217, 8438-8446 (2011) · Zbl 1219.68080 · doi:10.1016/j.amc.2011.03.041
[9] Yuan, H.; Chen, G. Q.: Network virus-epidemic model with the point-to-group information propagation, Applied mathematics and computation 206, 357-367 (2008) · Zbl 1162.68404 · doi:10.1016/j.amc.2008.09.025
[10] Han, X.; Tan, Q.: Dynamical behavior of computer virus on Internet, Applied mathematics and computation (2010) · Zbl 1209.68139
[11] Wang, F. G.; Zhang, Y. K.; Wang, C. G.; Ma, J. F.; Moon, S. J.: Stability analysis of a SEIQV epidemic model for rapid spreading worms, Computers & security 29, 410-418 (2010)
[12] Yao, Y.; Xie, X. W.; Guo, H.; Yu, G.; Gao, F. X.; Tong, X. J.: Hopf bifurcation in Internet worm propagation with time delay in quarantine, Mathematical and computer modelling (2011) · Zbl 1286.92049
[13] Song, L. P.; Jin, Z.; Sun, G. Q.; Zhang, J.; Han, X.: Influence of removable devices on computer worms: dynamic analysis and control strategies, Computers and mathematics with applications 61, 1823-1829 (2011) · Zbl 1219.37065 · doi:10.1016/j.camwa.2011.02.010
[14] Forrest, S.; Hofmayer, S. A.; Somayaji, A.: Computer immunology, Communications of the ACM 40, 88-96 (1997)
[15] Wang, J. J.; Zhang, J. Z.; Jin, Z.: Analysis of an SIR model with bilinear incidence rate, Nonlinear analysis: real world applications 11, 2390-2402 (2010) · Zbl 1203.34136 · doi:10.1016/j.nonrwa.2009.07.012
[16] Li, L.; Sun, G. Q.; Jin, Z.: Bifurcation and chaos in an epidemic model with nonlinear incidence rates, Applied mathematics and computation 216, 1226-1234 (2010) · Zbl 1187.92073 · doi:10.1016/j.amc.2010.02.014
[17] Hadeler, K. P.; Driessche, P.: Backward bifurcation in epidemic control, Mathematical biosciences 146, 15-35 (1997) · Zbl 0904.92031 · doi:10.1016/S0025-5564(97)00027-8