×

A method for designing strong S-Boxes based on chaotic Lorenz system. (English) Zbl 1238.34085

Summary: It is important to design cryptographically strong S-Boxes in order to design secure systems. In this study, a strong, chaos-based S-Box design is proposed. Continuous-time Lorenz system is chosen as the chaotic system. Proposed methodology is analyzed and tested for the following criteria: Bijective property, nonlinearity, strict avalanche criterion, output bits independence criterion and equiprobable input/output XOR distribution. The results of the analysis show that the proposed cryptosystem is a highly reliable system suitable for secure communication.

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
94A60 Cryptography
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shannon, C. E., Bell Syst. Tech. J., 28, 656 (1949) · Zbl 1200.94005
[2] Baptista, M. S., Phys. Lett. A, 240, 50 (1998) · Zbl 0936.94013
[3] Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G., Phys. Lett. A, 276, 191 (2000) · Zbl 1274.94033
[4] Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G., Phys. Lett. A, 311, 172 (2003) · Zbl 1027.94009
[5] Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G., Phys. Lett. A, 306, 200 (2003) · Zbl 1006.94017
[6] Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G., Phys. Lett. A, 319, 334 (2003) · Zbl 1031.94010
[7] Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G., Phys. Lett. A, 326, 211 (2004) · Zbl 1138.94346
[8] Li, S.; Mou, X.; Ji, Z.; Zhang, J.; Cai, Y., Phys. Lett. A, 290, 127 (2001)
[9] Li, S.; Mou, X.; Ji, Z.; Zhang, J.; Cai, Y., Phys. Lett. A, 307, 22 (2003) · Zbl 1006.94018
[10] Wong, K. W., Phys. Lett. A, 298, 238 (2002) · Zbl 0995.94029
[11] Wang, Y.; Wong, K. W.; Liao, X.; Xiang, T., Commun. Nonlinear Sci. Numer. Simul., 14, 3089 (2009) · Zbl 1221.94068
[12] Chen, G.; Chen, Y.; Liao, X., Chaos Solitons Fractals, 31, 571 (2007) · Zbl 1138.94354
[13] Guoping, T.; Xiaofeng, L.; Yong, C., Chaos Solitons Fractals, 23, 413 (2005) · Zbl 1068.94017
[14] Jakimoski, G.; Kocarev, L., IEEE Trans. Circuits Syst.-I, 48, 2, 163 (2001) · Zbl 0998.94016
[15] Adams, C.; Tavares, S., (Advances in Cryptology: Proceedings of CRYPTO_89. Advances in Cryptology: Proceedings of CRYPTO_89, Lecture Notes in Computer Science (1989)), 612-615
[16] Webster, A. F.; Tavares, S., (Advances in Cryptology: Proceedings of CRYPTO_85. Advances in Cryptology: Proceedings of CRYPTO_85, Lecture Notes in Computer Science (1986)), 523-534 · Zbl 0583.00050
[17] Detombe, J.; Tavares, S., (Advances in Cryptology: Proceedings of CRYPTO_92. Advances in Cryptology: Proceedings of CRYPTO_92, Lecture Notes in Computer Science (1992))
[18] Biham, E.; Shamir, A., J. Cryptol., 4, 1, 3 (1991) · Zbl 0729.68017
[19] Dawson, M.; Tavares, S., (Advances in Cryptology: Proceedings of EUROCRYPT_91. Advances in Cryptology: Proceedings of EUROCRYPT_91, Lecture Notes in Computer Science (1991)), 352-367 · Zbl 0825.94199
[20] J. Pieprzyk, G. Finkelsten, Towards effective nonlinear cryptosystem design, in: IEE Proc. Part E: Computers Digital Techn., vol. 135, 1988, pp. 325-335; J. Pieprzyk, G. Finkelsten, Towards effective nonlinear cryptosystem design, in: IEE Proc. Part E: Computers Digital Techn., vol. 135, 1988, pp. 325-335
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.