×

Fan sub-equation method for Wick-type stochastic partial differential equations. (English) Zbl 1238.35198

Summary: An improved algorithm is devised for using the Fan sub-equation method to solve Wick-type stochastic partial differential equations. Applying the improved algorithm to the Wick-type generalized stochastic KdV equation, we obtain more general Jacobi and Weierstrass elliptic function solutions, hyperbolic and trigonometric function solutions, exponential function solutions and rational solutions.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
60H40 White noise theory
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Wadati, M., J. Phys. Soc. Japan, 52, 2642 (1983)
[2] Wadati, M.; Akutsu, Y., J. Phys. Soc. Japan, 53, 3342 (1984)
[3] Wadati, M., J. Phys. Soc. Japan, 59, 4201 (1990)
[4] de Bouard, A.; Debussche, A., J. Funct. Anal., 154, 215 (1998)
[5] de Bouard, A.; Debussche, A., J. Funct. Anal., 169, 258 (1999)
[6] Debussche, A.; Printems, J., Physica D, 134, 200 (1999)
[7] Debussche, A.; Printems, J., J. Comput. Anal. Appl., 3, 183 (2001)
[8] Konotop, V. V.; Vázquez, L., Nonlinear Random Waves (1994), World Scientific: World Scientific Singapore · Zbl 1058.76500
[9] Holden, H.; Øksendal, B.; Ubøe, J.; Zhang, T. S., Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach (1996), Birhkäuser: Birhkäuser Basel · Zbl 0860.60045
[10] Xie, Y. C., Phys. Lett. A, 310, 161 (2003)
[11] Xie, Y. C., Phys. Lett. A, 327, 174 (2004)
[12] Xie, Y. C., Chaos Solitons Fractals, 21, 473 (2004)
[13] Wei, C. M.; Xia, Z. Q., Chaos Solitons Fractals, 26, 329 (2005)
[14] Wei, C. M.; Xia, Z. Q.; Tian, N. S., Chaos Solitons Fractals, 26, 551 (2005)
[15] Wei, C. M.; Xia, Z. Q.; Tian, N. S., Chaos Solitons Fractals, 29, 1178 (2006)
[16] Chen, B.; Xie, Y. C., Chaos Solitons Fractals, 33, 864 (2007)
[17] Chen, B.; Xie, Y. C., J. Comput. Appl. Math., 203, 249 (2007)
[18] Liu, Q.; Zhu, J. M.; Wu, H. Y., J. Phys. Soc. Japan, 75, 014002 (2006)
[19] Liu, Q., Europhys. Lett., 74, 377 (2006)
[20] Liu, Q., Chaos Solitons Fractals, 36, 1037 (2008)
[21] Liu, Q.; Jia, D. L., Appl. Math. Comput., 215, 3495 (2010)
[22] Ma, Z. Y.; Zhu, J. M., Chaos Solitons Fractals, 32, 1679 (2008)
[23] Dai, C. Q.; Chen, J. L., Chaos Solitons Fractals, 42, 2200 (2008)
[24] Ginovart, F., J. Comput. Appl. Math., 220, 559 (2008)
[25] Fan, E. G., Phys. Lett. A, 300, 243 (2002)
[26] Fan, E. G., J. Phys. A: Math. Gen., 36, 7009 (2003) · Zbl 1167.35324
[27] Fan, E. G., Chaos Solitons Fractals, 16, 819 (2003)
[28] Fan, E. G.; Dai, H. H., Comput. Phys. Commun., 153, 17 (2003)
[29] Fan, E. G.; Hon, Y., Chaos Solitons Fractals, 15, 559 (2003)
[30] Chen, Y.; Wang, Q.; Li, B., Commun. Theor. Phys., 42, 655 (2004)
[31] Jiao, X. Y.; Wang, J. H.; Zhang, H. Q., Commun. Theor. Phys., 44, 407 (2005)
[32] Yomba, E., Chaos Solitons Fractals, 27, 187 (2006)
[33] Zhang, S.; Xia, T. C., Phys. Lett. A, 356, 119 (2006)
[34] Feng, D. H.; Li, J. B.; Lü, J. L.; He, T. L., Appl. Math. Comput., 194, 309 (2007)
[35] Li, B.; Chen, Y.; Li, Y. Q., Z. Naturforsch., 63a, 763 (2008)
[36] Wang, M. J.; Wang, Q., Chaos Solitons Fractals, 33, 835 (2007)
[37] Benth, E.; Gjerde, J., Potential Anal., 8, 179 (1998)
[38] Wei, C. M.; Xia, Z. Q.; Tian, N. S., Acta Phys. Sinica, 54, 2463 (2005), (in Chinese)
[39] Wei, C. M.; Xia, Z. Q.; Tian, N. S., Chaos Solitons Fractals, 37, 733 (2008)
[40] Chen, B.; Xie, Y. C., Chaos Solitons Fractals, 23, 281 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.