×

Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations. (English) Zbl 1238.60082

The paper under review studies the unique invariant measure and the existence of a spectral gap under conditions reminiscent of Harris’ theorem.
A Markov process \(\{X_t\}\) on the space \({\mathcal C}([-r, 0], {\mathbb R})\) possesses an invariant measure for a sufficiently large scale of drifting. For any solution \(X_t\) of a stochastic delay differential equation (SDDE) and for any \(t>0\), the initial condition \(X_0\) can be recovered with probability one. If the recovered initial condition in \({\mathcal C}([-r, 0], {\mathbb R})\) does not agree with \(X_0\), then the transition probabilities for any step of this chain are always mutually singular.
Theorem 3.1 in the reviewed paper provides sufficient conditions on the drift and the diffusion on the phase space to guarantee the existence of a unique global solution. The main idea is to use the results and techniques in [Weinan E, J. C. Mattingly and Y. Sinai, Commun. Math. Phys, 224, No. 1, 83–106 (2001; Zbl 0994.60065)]. E, Mattingly and Sinai reduce the original stochastic Navier-Stokes equation to an SDDE. The central idea is to “Girsanov-shift” the driving Wiener process to start at a different initial condition asymptotically as time goes to infinity.
In Section 2, the authors prove a very general theorem (Theorem 1.1) which gives a verifiable condition equivalent to unique ergodicity. A measurable function \(V: X\to {\mathbb R}_+\) is Lyapunov for a Markov semigroup \(P_t\) if there exist strictly positive constants \(c_V, \gamma, K_v\) such that \[ P_t V(x) \leq c_V e^{-\gamma t}V(x) + K_V \] for all \(x\in X\) and \(t\geq 0\). A small set for \(P_t\) is a set \(A\) such that there exists \(\delta > 0\) with \(\|P_t(x, \cdot) - P_t(y, \cdot)\|_{TV} \leq 1- \delta\) for any \(x, y\in A\). Harris’ theorem states that, if every level set of a Lyapunov function is small for \(P_{t_*}\) with \(\gamma \cdot t_* > \ln c_V\), then there exists a unique invariant probability measure for the Markov semigroup \(P_t\). The authors prove a Harris-type theorem under slightly generalized conditions. Section 2 is devoted to the proof of Theorem 1.1, the unique ergodicity through asymptotically coupling, and a simple criterion on the convergence of transition probabilities towards an invariant measure in Theorem 2.4.
Section 3 gives applications of the uniqueness and convergence criteria to SDDE, as Theorem 3.1 for at most one invariant measure for SDDE. Furthermore, the authors show in Theorem 3.7 that, for each initial \(\eta \in {\mathcal C}\), the transition probability of the SDDE Markov semigroupconverges to the invariant measure weakly.
Section 4 shows that there is an improved Harris theorem with \(d\)-small set condition and contracting. A set \(A\) is \(d\)-small if there exists \(\varepsilon > 0\) such that \(d(P_t(x, \cdot), P_t(y, \cdot) \leq 1 - \varepsilon\) for all \(x, y\in A\). Having a Lyapunov function \(V\) with \(d\)-small sets is not enough to have the uniqur ergodicity for a Markov semigroup. One needs the distance-like function \(d\) to be contracting. Theorem 4.8 shows that Harris results hold for Markov semigroups with Lyapunov functions such that their level sets are \(d\)-small and \(d\) is contracting.
In the last Section 5, the authors give a distance-like function \(d\) which is contracting and every bounded set is \(d\)-small for the Markov semigroup arising from the SDDE. Hence the results in Section 4 can be applied directly to the SDDE. This gives a positive answer to a long-standing problem of finding natural conditions under which a stochastic delay differential equation admits at most one invariant measure and transition probabilities converge to it.

MSC:

60J05 Discrete-time Markov processes on general state spaces
34K50 Stochastic functional-differential equations
37A30 Ergodic theorems, spectral theory, Markov operators

Citations:

Zbl 0994.60065

References:

[1] Bakry, D.; Cattiaux, P.; Guillin, A., Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254, 3, 727-759 (2008) · Zbl 1146.60058 · doi:10.1016/j.jfa.2007.11.002
[2] Bakhtin, Y.; Mattingly, J., Stationary solutions of stochastic differential equations with memory and stochastic partial differential equations, Commun. Contemp. Math., 7, 553-582 (2005) · Zbl 1098.34063 · doi:10.1142/S0219199705001878
[3] Bass, R., Diffusions and Elliptic Operators (1998), New York: Springer, New York · Zbl 0914.60009
[4] Bricmont, J.; Kupiainen, A.; Lefevere, R., Ergodicity of the 2D Navier-Stokes equations with random forcing, Comm. Math. Phys., 224, 1, 65-81 (2001) · Zbl 0994.60066 · doi:10.1007/s002200100510
[5] Cranston, M.; Wang, F.-Y., A condition for the equivalence of coupling and shift coupling, Ann. Prob., 28, 4, 1666-1679 (2002) · Zbl 1044.60066
[6] Douc, R.; Fort, G.; Guillin, A., Subgeometric rates of convergence of f-ergodic strong Markov processes, Stoch. Proc. Appl., 119, 3, 897-923 (2009) · Zbl 1163.60034 · doi:10.1016/j.spa.2008.03.007
[7] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[8] Es-Sarhir, A.; van Gaans, O.; Scheutzow, M., Invariant measures for stochastic functional differential equations with superlinear drift term, Diff. Int. Equ., 23, 1-2, 189-200 (2010) · Zbl 1240.34396
[9] Eckmann, J.-P.; Hairer, M., Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys., 219, 3, 523-565 (2001) · Zbl 0983.60058 · doi:10.1007/s002200100424
[10] Weinan, E.; Mattingly, J. C.; Sinai, Y., Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys., 224, 1, 83-106 (2001) · Zbl 0994.60065 · doi:10.1007/s002201224083
[11] Hairer, M., Exponential mixing properties of stochastic PDEs through asymptotic coupling, Prob, Theory Relat Fields, 124, 345-380 (2002) · Zbl 1032.60056 · doi:10.1007/s004400200216
[12] Hairer, M., How hot can a heat bath get?, Comm. Math. Phys., 292, 1, 131-177 (2009) · Zbl 1190.82022 · doi:10.1007/s00220-009-0857-6
[13] Hairer, M.; Mattingly, J., Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164, 993-1032 (2006) · Zbl 1130.37038 · doi:10.4007/annals.2006.164.993
[14] Hairer, M.; Mattingly, J., Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Prob., 36, 6, 2050-2091 (2008) · Zbl 1173.37005 · doi:10.1214/08-AOP392
[15] Hairer, M., Mattingly, J.: Yet another look at Harris’ ergodic theorem for Markov chains. (2008, Submitted) · Zbl 1248.60082
[16] Hairer, M., Mattingly, J.: A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. (2008, Submitted) · Zbl 1228.60072
[17] Itô, K.; Nisio, M., On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4, 1-75 (1964) · Zbl 0131.16402
[18] Kuratowski, K.; Ryll-Nardzewski, C., A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 13, 397-403 (1965) · Zbl 0152.21403
[19] Kuksin, S.; Shirikyan, A., Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl. (9), 81, 6, 567-602 (2002) · Zbl 1021.37044 · doi:10.1016/S0021-7824(02)01259-X
[20] Lindvall, T., Lectures on the Coupling Method (1992), New York: J Wiley, New York · Zbl 0850.60019
[21] Masmoudi, N.; Young, L.-S., Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs, Comm. Math. Phys., 227, 3, 461-481 (2002) · Zbl 1009.37049 · doi:10.1007/s002200200639
[22] Mattingly, J. C., Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Comm. Math. Phys., 230, 3, 421-462 (2002) · Zbl 1054.76020 · doi:10.1007/s00220-002-0688-1
[23] Mattingly, J.C.: Saint Flour Lectures. Summer 2007 version from summer school (in preparation)
[24] Mohammed, S. E.A., Non-linear flows of stochastic linear delay equations, Stochastics, 17, 207-213 (1986) · Zbl 0565.60053
[25] Mohammed, S. E.A.; Scheutzow, M., Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. Part II: examples and case studies, Ann. Prob., 25, 1210-1240 (1997) · Zbl 0885.60043 · doi:10.1214/aop/1024404511
[26] Meyn, S. P.; Tweedie, R. L., Markov Chains and Stochastic Stability (1993), London: Springer, London · Zbl 0925.60001
[27] Reiß, M.; Riedle, M.; van Gaans, O., Delay differential equations driven by Lévy processes: stationarity and Feller properties, Stoch. Process. Appl., 116, 1409-1432 (2006) · Zbl 1109.60045 · doi:10.1016/j.spa.2006.03.002
[28] van Renesse, M., Scheutzow, M.: Existence and uniqueness of solutions of stochastic functional differential equations. (2008, Submitted)
[29] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften, vol. 293 (1991), Berlin: Springer-Verlag, Berlin · Zbl 0731.60002
[30] Rey-Bellet, L.; Thomas, L., Exponential convergence to non-equilibrium stationary states in classical statistical mechanics, Comm. Math. Phys., 225, 2, 305-329 (2002) · Zbl 0989.82023 · doi:10.1007/s002200100583
[31] Scheutzow, M., Qualitative behaviour of stochastic delay equations with a bounded memory, Stochastics, 12, 41-80 (1984) · Zbl 0539.60061
[32] Scheutzow, M., Exponential growth rates for stochastic delay differential equations, Stoch. Dyn., 5, 163-174 (2005) · Zbl 1079.60058 · doi:10.1142/S0219493705001468
[33] Scheutzow, M.; Steinsaltz, D., Chasing balls through martingale fields, Ann. Prob., 30, 2046-2080 (2002) · Zbl 1017.60073 · doi:10.1214/aop/1039548381
[34] Veretennikov, A. Yu., On polynomial mixing and the rate of convergence for stochastic differential and difference equations, Theory Probab. Appl., 44, 2, 361-374 (2000) · Zbl 0969.60070 · doi:10.1137/S0040585X97977550
[35] Villani, C., Topics in Optimal Transportation. Graduate Studies in Mathematics, 58 (2003), Providence: American Mathematical Society, Providence · Zbl 1106.90001
[36] Wagner, D. H., Survey of measurable selection theorems, SIAM J. Control Optim., 15, 5, 859-903 (1977) · Zbl 0407.28006 · doi:10.1137/0315056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.