Modeling heavy-tailed, skewed and peaked uncertainty phenomena with bounded support. (English) Zbl 1238.62012

Summary: A prevalence of heavy-tailed, peaked and skewed uncertainty phenomena have been cited in the literature dealing with economic, physics, and engineering data. This fact has invigorated the search for continuous distributions of this nature. In this paper we generalize the two-sided framework presented by S. Kotz and J.R. van Dorp [Beyond beta. Other continuous families of distributions with bounded support and applications. NJ: World Scient. Publ. (2004; Zbl 1094.62012)] for the construction of families of distributions with bounded support via a mixture technique utilizing two generating densities instead of one. The family of Elevated Two-Sided Power (ETSP) distributions is studied as an instance of this generalized framework. Through a moment ratio diagram comparison, we demonstrate that the ETSP family allows for a remarkable flexibility when modeling heavy-tailed and peaked, but skewed uncertainty phenomena. We demonstrate its applicability via an illustrative example utilizing 2008 US income data.


62E10 Characterization and structure theory of statistical distributions
62P20 Applications of statistics to economics
65C60 Computational problems in statistics (MSC2010)


Zbl 1094.62012
Full Text: DOI


[1] Aban IB, Meerschaert MM, Panorska AK (2006) Parameter estimation for the truncated Pareto distribution. J Am Stat Assoc 101(473): 270–277 · Zbl 1118.62312 · doi:10.1198/016214505000000411
[2] Adler R, Feldman R, Taqqu M (1998) A practical guide to heavy tails. Birkhäuser, Boston · Zbl 0901.00010
[3] Arnold BC (1983) Pareto distributions. International Cooperative Publishing House, Fairland · Zbl 1169.62307
[4] Barkai E, Metzler R, Klafter J (2000) From continuous time random walks to the fractional Fokker-Planck equation. Phys Rev E61: 132–138
[5] Barsky R, Bound J, Kerwin KC, Lupton JP (2002) Accounting for the black-white wealth gap: a nonparametric approach. J Am Stat Assoc 97(459): 663–673 · Zbl 1073.62598 · doi:10.1198/016214502388618401
[6] Clementi F, Gallegatib M (2005) Power law tails in the Italian personal income distribution. Phys A Stat Mech Appl 350(2–4): 427–438 · doi:10.1016/j.physa.2004.11.038
[7] Coelho R, Richmond P, Barrya J, Hutzlera S (2008) Double power laws in income and wealth distributions. Phys A Stat Mech Appl 387(15): 3847–3851 · doi:10.1016/j.physa.2008.01.047
[8] Douglas EM, Barros AP (2003) Probable maximum precipitation estimation using multifractals: application in the Eastern United States. J Hydrometeorol 4(6): 1012–1024 · doi:10.1175/1525-7541(2003)004<1012:PMPEUM>2.0.CO;2
[9] Elderton WP, Johnson NL (1969) Systems of frequency curves. Cambridge University Press, London
[10] Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, Berlin · Zbl 0873.62116
[11] Fernandez C, Steel MFJ (1998) On Bayesian modeling of fat tails and skewness. J Am Stat Assoc 93: 359–371 · Zbl 0910.62024
[12] Gomez HW, Torres FJ, Bolfarine H (2007) Large-sample inference for the epsilon-skew-distribution. Commun Stat Theory Methods 36: 73–81 · Zbl 1109.62017 · doi:10.1080/03610920600966514
[13] Hahn ED (2008) Mixture densities for project management activity times: a robust approach to PERT. Eur J Oper Res 188: 450–459 · Zbl 1149.90351 · doi:10.1016/j.ejor.2007.04.032
[14] Herrerías-Velasco JM, Herrerías-Pleguezuelo R, van Dorp JR (2008) The generalized two-sided power distribution. J Appl Stat 36(5): 573–587 · Zbl 1473.62045 · doi:10.1080/02664760802582850
[15] Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley, Hoboken · Zbl 1044.62014
[16] Kotz S, Johnson NL (1985) Moment ratio diagrams, In: Encyclopedia of statistical sciences, vol 5. Wiley, New York
[17] Kotz S, Kozubowski TJ, Podgórski K (2001) The Laplace distribution and generalizations. Birkhäuser, Boston · Zbl 0977.62003
[18] Kotz S, van Dorp JR (2004) Beyond beta: other continuous families of distributions with bounded support and applications. World Scientific Press, Singapore · Zbl 1094.62012
[19] Kotz S, van Dorp JR (2005) A link between two-sided power and asymmetric laplace distributions: with applications to mean and variance approximations. Stat Probabil Lett 71: 382–394 · Zbl 1076.60013
[20] Lévy P (1925) Calcul des probabilitiés, 2nd part, Chap. VI. Gauthier-Villars, Paris
[21] Levy H, Duchin R (2004) Asset return distribution and the investment horizon, explaining contradictions. J Portfolio Manage 30(3): 47–62 · doi:10.3905/jpm.2004.412319
[22] Lu SL, Molz FJ (2001) How well are hydraulic conductivity variations approximated by additive stable processes?. Adv Environ Res 5(1): 39–45 · doi:10.1016/S1093-0191(00)00040-X
[23] McFall Lamm Jr R (2003) Asymmetric returns and optimal hedge fund portfolios. J Alternat Invest, pp 9–21
[24] McCulloch J (1996) Financial applications of stable distributions. In: Madfala G, Rao CR (eds) Statistical methods in finance. Elsevier, Amsterdam, pp 393–425
[25] Miyazima S, Yamamoto K (2006) Power-law behaviors in high income distribution. Pract Fruits Econophys 5: 344–348 · doi:10.1007/4-431-28915-1_63
[26] Nagahara Y (1999) The PDF and CDF of Pearson Type IV distributions and the ML estimation of the parameters. Stat Probabil Lett 43: 251–264 · Zbl 0930.62013 · doi:10.1016/S0167-7152(98)00265-X
[27] Pareto V (1964) Cours d’Économie Politique: Nouvelle édition par G.-H. Bousquet et G. Busino. Librairie Droz, Geneva 299–345
[28] Press WH, Flannery BP, Teukolsky SA, Vettering WT (1989) Numerical recipes in pascal. Cambridge University Press, Cambridge
[29] Resnick S (1997) Heavy tail modeling and teletraffic data. Ann Stat 25: 1805–1869 · Zbl 0942.62097 · doi:10.1214/aos/1069362376
[30] Samorodnitsky G, Taqqu M (2004) Stable non-Gaussian random processes. Chapman &amp; Hall, New York
[31] Sarabia JM (2008) Parametric Lorenz curves: models and applications, Modeling Income Distributions and Lorenz Curves. Economic studies in inequality. In: Chotikapanich D (eds) Social exclusion and well-being vol 4. Springer, Berlin, pp 167–190 · Zbl 1151.91658
[32] Singh A, van Dorp JR, Mazzuchi TA (2007) A novel assymetric distribution with power tails. Commun Stat Theory Methods 36(2): 235–252 · Zbl 1115.60016 · doi:10.1080/03610920600974567
[33] Solomon S, Levy M (2000) Market ecology, Pareto wealth distribution and leptokurtic returns in microscopic simulation of the LLS stock market model. In: Proceedings of complex behavior in economics, Aix en Provence (Marseille), France, May 4–6
[34] Stuart A, Ord JK (1994) Kendall’s advanced theory of statistics. Wiley, New York
[35] Van Dorp JR, Kotz S (2002) The standard two sided power distribution and its properties: with applications in financial engineering. Am Stat 56(2): 90–99 · Zbl 1182.62017 · doi:10.1198/000313002317572745
[36] Van Dorp JR, Kotz S (2003) Generalizations of two-sided power distributions and their convolution. Commun Stat Theory Methods 32(9): 1703–1723 · Zbl 1171.60315 · doi:10.1081/STA-120022704
[37] Zabell SL (2008) On Student’s 1908 Article ”The Probable Error of a Mean”. J Am Stat Assoc 103(481): 1–7 · Zbl 1469.62010 · doi:10.1198/016214508000000030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.