Wang, Guotao Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments. (English) Zbl 1238.65077 J. Comput. Appl. Math. 236, No. 9, 2425-2430 (2012). The author considers a nonlinear fractional differential equation with deviating arguments. A method of upper and lower solutions and the monotone iterative technique is used to prove constructive existence results for the problem under consideration. Some useful example is presented to illustrate the method considered by the author. Reviewer: Abdallah Bradji (Annaba) Cited in 66 Documents MSC: 65L10 Numerical solution of boundary value problems involving ordinary differential equations 65L03 Numerical methods for functional-differential equations 34K10 Boundary value problems for functional-differential equations 34K37 Functional-differential equations with fractional derivatives 34K28 Numerical approximation of solutions of functional-differential equations (MSC2010) Keywords:monotone iterative technique; boundary value problems; nonlinear fractional differential equation; deviating arguments; Riemann-Liouville fractional derivatives; nonlinear boundary conditions PDF BibTeX XML Cite \textit{G. Wang}, J. Comput. Appl. Math. 236, No. 9, 2425--2430 (2012; Zbl 1238.65077) Full Text: DOI References: [1] Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering (1999), Academic Press: Academic Press New York [2] Lakshmikantham, V.; Leela, S.; Vasundhara, J., Theory of Fractional Dynamic Systems (2009), Cambridge Academic Publishers: Cambridge Academic Publishers Cambridge · Zbl 1188.37002 [3] Agarwal, R. P.; O’Regan, D.; Wong, P. J.Y., Positive Solutions of Differential, Difference and Integral Equations (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0923.39002 [4] Deimling, K., Nonlinear Functional Analysis (1985), Springer-Verlag: Springer-Verlag Berlin · Zbl 0559.47040 [5] Burton, T. A., Differential inequalities for integral and delay differential equations, (Liu, Xinzhi; Siegel, David, Comparison Methods and Stability Theory. Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math. (1994), Dekker: Dekker New York) · Zbl 0809.34006 [6] Al-Bassam, M. A., Some existence theorems on differential equations of generalized order, J. Reine Angew. Math., 218, 1, 70-78 (1965) · Zbl 0156.30804 [7] Bai, Z.; Qiu, T., Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., 215, 2761-2767 (2009) · Zbl 1185.34004 [8] Ibrahim, R. W.; Darus, M., Subordination and superordination for univalent solutions for fractional differential equations, J. Math. Anal. Appl., 345, 871-879 (2008) · Zbl 1147.30009 [9] Zhang, S., Positive solution for some class of nonlinear fractional differential equation, J. Math. Anal. Appl., 278, 1, 136-148 (2003) · Zbl 1026.34008 [10] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A., Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338, 1340-1350 (2008) · Zbl 1209.34096 [11] Kosmatov, N., Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal. TMA, 70, 7, 2521-2529 (2009) · Zbl 1169.34302 [12] Devi, J. V.; Lakshmikantham, V., Nonsmooth analysis and fractional differential equations, Nonlinear Anal. TMA, 70, 12, 4151-4157 (2009) · Zbl 1237.49022 [13] Lakshmikanthama, V.; Leela, S., A Krasnoselskii-Krein-type uniqueness result for fractional differential equations, Nonlinear Anal., 71, 3421-3424 (2009) · Zbl 1177.34004 [14] Kosmatov, N., Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal., 70, 7, 2521-2529 (2009) · Zbl 1169.34302 [15] Arara, A.; Benchohra, M.; Hamidi, N.; Nieto, J. J., Fractional order differential equations on an unbounded domain, Nonlinear Anal., 72, 580-586 (2010) · Zbl 1179.26015 [16] Lakshmikantham, V., Theory of fractional functional differential equations, Nonlinear Anal., 69, 3337-3343 (2008) · Zbl 1162.34344 [17] Lakshmikantham, V.; Vatsala, A. S., Basic theory of fractional differential equations, Nonlinear Anal., 69, 8, 2677-2682 (2008) · Zbl 1161.34001 [18] Lakshmikantham, V.; Vatsala, A. S., Theorey of fractional differential inequalities and applications, Commun. Appl. Anal., 11, 871-879 (2007) [19] Lakshmikanthan, V.; Vatsala, A. S., General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21, 828-834 (2008) · Zbl 1161.34031 [20] Zhang, S., Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71, 2087-2093 (2009) · Zbl 1172.26307 [21] McRae, F. A., Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal., 71, 6093-6096 (2009) · Zbl 1260.34014 [22] Belmekki, M.; Nieto, J. J.; Rodriguez-Lopez, R., Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Probl., 2009 (2009), Art. ID 324561 · Zbl 1181.34006 [23] Chang, Y. K.; Nieto, J. J., Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Model., 49, 605-609 (2009) · Zbl 1165.34313 [24] Liang, S.; Zhang, J., Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal., 71, 5545-5550 (2009) · Zbl 1185.26011 [25] Ahmad, B.; Nieto, J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58, 9, 1838-1843 (2009) · Zbl 1205.34003 [26] Shi, K.; Wang, Y., On a stochastic fractional partial differential equation driven by a Levy space-time white noise, J. Math. Anal. Appl., 364, 1, 119-129 (2010) · Zbl 1185.60071 [27] Liu, J.; Xu, M., Some exact solutions to Stefan problems with fractional differential equations, J. Math. Anal. Appl., 351, 2, 536-542 (2009) · Zbl 1163.35043 [28] Wei, Z.; Li, Q.; Che, J., Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367, 260-272 (2010) · Zbl 1191.34008 [29] Henderson, J.; Ouahab, A., Fractional functional differential inclusions with finite delay, Nonlinear Anal., 70, 2091-2105 (2009) · Zbl 1159.34010 [30] Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72, 6, 2859-2862 (2010) · Zbl 1188.34005 [31] Bai, Z.; Lv, H., Positive solutions for boundary value problems of nonlinear fractional differential equations, J. Math. Anal. Appl., 311, 495-505 (2005) · Zbl 1079.34048 [32] Ladde, G. S.; Lakshmikantham, V.; Vatsala, A. S., Monotone Iterative Techniques for Nonlinear Differential Equations (1985), Pitman Pub. Co: Pitman Pub. Co Boston · Zbl 0658.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.