×

Aggregation functions and contradictory information. (English) Zbl 1238.68162

Summary: The aim of this paper is to analyze the behavior of aggregation functions when the inputs are contradictory. This may be a useful criterion helping to choose the most appropriate function for solving a given problem. With that goal, bivariate aggregation functions are classified depending on the output they associate to contradictory couples of the form \((x,N(x))\), where \(N\) is a strong negation. The main properties of the newly defined classes are studied. Examples of functions in each class are provided, paying special attention to the most important families of aggregation functions, such as t-norms, copulas, symmetric sums, uninorms or nullnorms.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI

References:

[1] Alsina, C.; Frank, M.; Schweizer, B., Associative Functions. Triangular Norms and Copulas (2006), World Scientific: World Scientific Singapore · Zbl 1100.39023
[2] Beliakov, G., Construction of aggregation operators for automated decision making via optimal interpolation and global optimization, J. Ind. Manage. Optim., 3, 193-208 (2007) · Zbl 1152.91399
[3] Beliakov, G.; Calvo, T., Construction of aggregation operators with noble reinforcement, IEEE Trans. Fuzzy Syst., 15, 1209-1218 (2007)
[4] Beliakov, G.; Calvo, T.; Lázaro, J., Pointwise construction of Lipschitz aggregation operators with specific properties, Int. J. Uncertainty Fuzziness Knowl. Based Syst., 15, 193-223 (2007) · Zbl 1120.68099
[5] Beliakov, G.; Pradera, A.; Calvo, T., Aggregation Functions: A Guide for Practitioners (2007), Springer: Springer Berlin, Heidelberg · Zbl 1123.68124
[6] Benferhat, S.; Dubois, D.; Kaci, S.; Prade, H., Bipolar possibility theory in preference modeling: representation, fusion and optimal solutions, Inf. Fusion, 7, 135-150 (2006)
[7] Calvo, T.; De Baets, B.; Fodor, J., The functional equations of Frank and Alsina for uninorms and nullnorms, Fuzzy Sets Syst., 120, 385-394 (2001) · Zbl 0977.03026
[8] Calvo, T.; Kolesárová, A.; Komorníková, M.; Mesiar, R., Aggregation operators: properties, classes and construction methods, (Calvo, T.; Mayor, G.; Mesiar, R., Aggregation Operators. New Trends and Applications (2002), Physica-Verlag: Physica-Verlag Heidelberg, New York), 3-104 · Zbl 1039.03015
[9] Cignoli, R.; Esteva, F.; Godo, L.; Montagna, F., On a class of left-continuous t-norms, Fuzzy Sets Syst., 131, 283-296 (2002) · Zbl 1012.03032
[10] De Baets, B., Idempotent uninorms, Eur. J. Oper. Res., 118, 631-642 (1999) · Zbl 0933.03071
[11] De Baets, B.; De Meyer, H.; Mesiar, R., Piecewise linear aggregation functions based on triangulation, Inf. Sci., 181, 466-478 (2011) · Zbl 1213.68618
[12] Drygaś, P., On the structure of continuous uninorms, Kybernetika, 43, 183-196 (2007) · Zbl 1132.03349
[13] Dubois, D.; Prade, H., An overview of the asymmetric bipolar representation of positive and negative information in possibility theory, Fuzzy Sets Syst., 160, 1355-1366 (2009) · Zbl 1187.68602
[14] Fodor, J., Contrapositive symmetry of fuzzy implications, Fuzzy Sets Syst., 69, 141-156 (1995) · Zbl 0845.03007
[15] Fodor, J.; Yager, R.; Rybalov, A., Structure of uninorms, Int. J. Uncertainty Fuzziness Knowl. Based Syst., 5, 411-427 (1997) · Zbl 1232.03015
[16] Grabisch, M., Aggregation on bipolar scales, (de Swart, H.; Orlowska, E.; Schmidt, G.; Roubens, M., Theory and Applications of Relational Structures as Knowledge Instruments II, Lecture Notes in Computer Science (2006), Springer), 355-371 · Zbl 1177.68214
[17] Grabisch, M.; Marichal, J.; Mesiar, R.; Pap, E., Aggregation Functions (2009), Cambridge University Press · Zbl 1196.00002
[18] Hu, S.; Li, Z., The structure of continuous uni-norms, Fuzzy Sets Syst., 124, 43-52 (2001) · Zbl 0989.03058
[19] Jenei, S., New family of triangular norms via contrapositive symmetrization of residuated implications, Fuzzy Sets Syst., 110, 157-174 (2000) · Zbl 0941.03059
[20] Jenei, S., Structure of Girard monoids on [0,1], (Klement, E.; Rodabaugh, S., Topological and Algebraic Structures in Fuzzy Sets, A Handbook of Recent Developments in the Mathematics of Fuzzy Sets (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 277-308 · Zbl 1036.03035
[21] Jenei, S., How to construct left-continuous triangular norms: state of the art, Fuzzy Sets Syst., 143, 27-45 (2004) · Zbl 1040.03021
[22] Klement, E.; Mesiar, R.; Pap, E., Triangular Norms (2000), Kluwer: Kluwer Dordrecht · Zbl 0972.03002
[23] Maes, K. C.; De Baets, B., Commutativity and self-duality: two tales of one equation, Int. J. Approx. Reason., 50, 189-199 (2009) · Zbl 1190.39011
[24] Maes, K. C.; Saminger, S.; De Baets, B., Representation and construction of self-dual aggregation operators, Eur. J. Oper. Res., 177, 472-487 (2007) · Zbl 1111.90071
[25] Marichal, J. L., Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral, Eur. J. Oper. Res., 155, 771-791 (2004) · Zbl 1044.90074
[26] Martín, J.; Mayor, G.; Torrens, J., On locally internal monotonic operations, Fuzzy Sets Syst., 137, 27-42 (2003) · Zbl 1022.03038
[27] Mas, M.; Mayor, G.; Torrens, J., T-operators, Int. J. Uncertainty Fuzziness Knowl. Based Syst., 7, 31-50 (1999) · Zbl 1087.03515
[28] Mesiar, R.; Komorníková, M., Triangular norm-based aggregation of evidence under fuzziness, (Bouchon-Meunier, B., Aggregation and Fusion of Imperfect Information (1998), Physica-Verlag: Physica-Verlag Heidelberg), 11-35
[29] Mesiarová-Zemánková, A.; Mesiar, R.; Ahmad, K., The balancing Choquet integral, Fuzzy Sets Syst., 161, 2243-2255 (2010) · Zbl 1194.28018
[30] Nelsen, R., An Introduction to Copulas (2006), Springer: Springer New York · Zbl 1152.62030
[31] Pradera, A., Uninorms and non-contradiction, (Torra, V.; Narukawa, Y., MDAI, Lecture Notes in Computer Science, vol. 5285 (2008), Springer), 50-61 · Zbl 1178.68590
[32] Pradera, A.; Trillas, E., Aggregation, non-contradiction and excluded-middle, Mathware Soft Comput., XIII, 189-201 (2006) · Zbl 1122.68128
[33] Pradera, A.; Trillas, E., Aggregation operators from the ancient NC and EM point of view, Kybernetika, 42, 243-260 (2006) · Zbl 1249.03101
[34] Torra, V.; Narukawa, Y., Modeling Decisions: Information Fusion and Aggregation Operators (2007), Springer
[35] Trillas, E., Sobre funciones de negación en la teoría de los subconjuntos difusos, Stochastica, III, 47-59 (1979), (in Spanish) Reprinted (English version) in: S. Barro, et al. (Eds.), Advances of Fuzzy Logic, Universidad de Santiago de Compostela, 1998, pp. 31-43
[36] Yager, R.; Rybalov, A., Uninorm aggregation operators, Fuzzy Sets Syst., 80, 111-120 (1996) · Zbl 0871.04007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.