Xu, Lan Dynamics of two-strand yarn spinning in forced vibration. (English) Zbl 1238.74020 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e-Suppl., e827-e829 (2009). Summary: We apply the variational iteration method to the study of forced vibration of two-strand yarn spinning. Resonance frequencies are obtained. Cited in 4 Documents MSC: 74K05 Strings 74H45 Vibrations in dynamical problems in solid mechanics Keywords:dynamical model; variational iteration method; coupled nonlinear oscillators; resonance PDF BibTeX XML Cite \textit{L. Xu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e827--e829 (2009; Zbl 1238.74020) Full Text: DOI OpenURL References: [1] Zhang, L.N.; He, J.H., Resonance in sirospun yarn spinning using a variational iteration method, Comput. math. appl., 54, 1064-1066, (2007) · Zbl 1141.65373 [2] He, J.H., Variational approach to nonlinear coupled oscillators arising in sirospun yarn spinning, Fibres text. east eur., 15, 31-34, (2007) [3] He, J.H.; Yu, Y.P.; Yu, J.Y., A nonlinear dynamic model for two-strand yarn spinning, Text. res. J., 75, 181-184, (2005) [4] He, J.H.; Yu, Y.P.; Pan, N., Quasistatic model for two-strand yarn spinning, Mech. res. comm., 32, 197-200, (2005) · Zbl 1177.70012 [5] He, J.H.; Yu, Y.P.; Yu, J.Y., A linear dynamic model for two-strand yarn spinning, Text. res. J., 75, 87-90, (2005) [6] Pracek, S., Theory of string motion in the textile process of yarn unwinding, Int. J. nonlinear sci., 8, 451-460, (2007) [7] He, J.H., Some asymptotic methods for strongly nonlinear equations, Internat. J. modern phys. B, 20, 1141-1199, (2006) · Zbl 1102.34039 [8] He, J.H.; Wu, X.H., Variational iteration method: new development and applications, Comput. math. appl., 54, 881-894, (2007) · Zbl 1141.65372 [9] He, J.H., Variational iteration method — some recent results and new interpretations, J. comput. appl. math., 207, 3-17, (2007) · Zbl 1119.65049 [10] He, J.H., Variational iteration method — a kind of non-linear analytical technique: some examples, Internat. J. nonlinear mech., 34, 699-708, (1999) · Zbl 1342.34005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.