zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symbolic computation of some new nonlinear partial differential equations of nanobiosciences using modified extended tanh-function method. (English) Zbl 1238.92001
Summary: By means of computerized symbolic computations and a modified extended tanh-function method multiple travelling wave solutions of nonlinear partial differential equations are presented and implemented in a computer algebraic system. Applying this method, we consider some nonlinear partial differential equations of special interest in nanobiosciences and biophysics, namely the transmission line models of microtubules for nano-ionic currents. The nonlinear equations elaborated here are quite original and first proposed in the context of important nanosciences problems related with cell signaling. They could be even of basic importance for explanation of cognitive processes in neurons. As results, we can successfully recover the previously known solitary wave solutions that had been found by other sophisticated methods. The method is straightforward and concise, and can also be applied to other nonlinear equations in physics.
35Q92PDEs in connection with biology and other natural sciences
68W30Symbolic computation and algebraic computation
Full Text: DOI
[1] Jawada, Anwar Ja’afar Mohamad; Petković, Marko D.; Biswas, Anjan: Soliton solutions of a few nonlinear wave equations, Applied mathematics and computation 216, 2649-2658 (2009) · Zbl 1195.35261 · doi:10.1016/j.amc.2010.03.110
[2] Drazin, P. G.; Johnson, R. S.: Solitons: an introduction, (1989) · Zbl 0661.35001
[3] Cariello, F.; Tabor, M.: Painlevé expansions for nonintegrable evolution equations, Physica D 39, 77-94 (1989) · Zbl 0687.35093 · doi:10.1016/0167-2789(89)90040-7
[4] Wang, M. L.: Exact solutions for a compound KdV-Burgers equation, Physics letters A 213, 279-287 (1996) · Zbl 0972.35526 · doi:10.1016/0375-9601(96)00103-X
[5] Fan, E.: Two new applications of the homogeneous balance method, Physics letters A 265, 353-357 (2000) · Zbl 0947.35012 · doi:10.1016/S0375-9601(00)00010-4
[6] Zhou, Y.; Wang, M.; Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients, Physics letters A 308, 31-36 (2003) · Zbl 1008.35061 · doi:10.1016/S0375-9601(02)01775-9
[7] Yomba, E.: The extended Fan’s sub-equation method and its application to KdV -- mkdv, BKK and variant Boussinesq equations, Physics letters A 336, 463-476 (2005) · Zbl 1136.35451 · doi:10.1016/j.physleta.2005.01.027
[8] Feng, X.: Exploratory approach to explicit solution of nonlinear evolutions equations, International journal of theoretical physics 39, 207-222 (2000) · Zbl 0962.35033 · doi:10.1023/A:1003615705115
[9] Li, Z. B.; Liu, Y. P.: RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations, Computer physics communications 148, 256-266 (2002) · Zbl 1196.35008 · doi:10.1016/S0010-4655(02)00559-3
[10] Peng, Y. Z.: A mapping method for obtaining exact travelling wave solutions to nonlinear evolution equations, Chinese journal of physics 41, 103-110 (2003)
[11] Yomba, E.: Construction of new soliton-like solutions of the (2+1) dimensional dispersive long wave equation, Chaos, solitons & fractals 20, 1135-1139 (2004) · Zbl 1049.35154
[12] Jawada, Anwar Ja’afar Mohamad; Petković, Marko D.; Biswas, Anjan: Soliton solutions of Burgers equations and perturbed Burgers equation, Applied mathematics and computation 216, 3370-3377 (2009) · Zbl 1195.35262 · doi:10.1016/j.amc.2010.04.066
[13] Fan, E.: Extended tanh-function method and its applications to nonlinear equations, Physics letters A 277, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[14] Fan, E.: Travelling wave solutions for generalized Hirota -- satsuma coupled KdV systems, Zeitschrift für naturforschung A 56, 312-318 (2001)
[15] El-Wakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R.: Modified extended tanh-function method and its applications to nonlinear equations, Applied mathematics and computation 161, 403-412 (2005) · Zbl 1062.35082 · doi:10.1016/j.amc.2003.12.035
[16] El-Wakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R.: Modified extended tanh-function method for solving nonlinear partial differential equations, Physics letters A 299, 179-188 (2002) · Zbl 0996.35043 · doi:10.1016/S0375-9601(02)00669-2
[17] Soliman, A. A.: The modified extended tanh-function method for solving Burgers type equations, Physica A 361, 394-404 (2006)
[18] Satarić, M. V.; Ilić, D. I.; Ralević, N.; Tuszynski, J. A.: A nonlinear model of ionic wave propagation along microtubules, European biophysics journal 38, 637-647 (2009)
[19] Satarić, M. V.; Sekulić, D.; Živanov, M.: Solitonic ionic currents along microtubules, Journal of computational and theoretical nanoscience 7, 2281-2290 (2010)
[20] Sekulić, D. L.; Satarić, B. M.; Tuszynski, J. A.; Satarić, M. V.: Nonlinear ionic pulses along microtubules, European physical journal E: soft matter 34, No. 5, 49 (2011)