zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control. (English) Zbl 1238.93070
Summary: In this paper, the problem of guaranteed cost synchronization for a complex network is investigated. In order to achieve the synchronization, two types of guaranteed cost dynamic feedback controllers are designed. Based on Lyapunov’s stability theory, a Linear Matrix Inequality (LMI) convex optimization problem is formulated to find the controller which guarantees the asymptotic stability and minimizes the upper bound of a given quadratic cost function. Finally, a numerical example is given to illustrate the proposed method.

93D05Lyapunov and other classical stabilities of control systems
93D20Asymptotic stability of control systems
93B52Feedback control
90C22Semidefinite programming
Full Text: DOI
[1] Strogatz, S. H.: Exploring complex networks, Nature 410, 268-276 (2001)
[2] Dorogovtesev, S. N.; Mendes, J. F. F.: Evolution of networks, Advances in physics 51, 1079-1187 (2002)
[3] Newman, M. E. J.: The structure and function of complex networks, SIAM review 45, 167-256 (2003) · Zbl 1029.68010 · doi:10.1137/S003614450342480
[4] Kim, H. R.; Oh, J. J.; Kim, D. W.: Task assignment strategies for a complex real-time network system, International journal of control, automation, and systems 4, 601-614 (2006)
[5] Barahona, M.; Pecora, L. M.: Synchronization in small-world systems, Phys. rev. Lett. 89, 054101 (2002)
[6] Karimi, H. R.: Robust synchronization and fault detection of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations, International journal of control, automation, and systems 9, 671-680 (2011)
[7] Ji, D. H.; Park, J. H.; Yoo, W. J.; Won, S. C.; Lee, S. M.: Synchronization criterion for Lur’e type complex dynamical networks with time-varying delay, Physics letters A 374, 1218-1227 (2010) · Zbl 1236.05186
[8] Li, N.; Zhang, Y.; Hu, J.; Nie, Z.: Synchronization for general complex dynamical networks with sampled-data, Neurocomputing 74, 805-811 (2011)
[9] Ji, D. H.; Jeong, S. C.; Park, J. H.; Lee, S. M.; Won, S. C.: Adaptive lag synchronization for uncertain complex dynamical network with delayed coupling, Applied mathematics and computation 218, No. 9, 4872-4880 (2012) · Zbl 1238.93053
[10] Li, R.; Duan, Z. S.; Chen, G. R.: Cost and effect of pinning control for network synchronization, Chinese physics B 18, 1056-1674 (2009)
[11] Maurizio, P.; Mario, B.: Criteria for global pinning-controllability of complex networks, Automatica 44, 3100-3106 (2008) · Zbl 1153.93329 · doi:10.1016/j.automatica.2008.05.006
[12] Jiang, G. P.; Tang, W. K. S.; Chen, G.: A state-observer-based approach for synchronization in complex dynamical networks, IEEE transactions on circuits and systems I: Regular papers 53, 2739-2745 (2006)
[13] Xu, D.; Su, Z.: Synchronization criterions and pinning control of general complex networks with time delay, Appl. math. Comput. 215, 1593-1608 (2009) · Zbl 1188.34100 · doi:10.1016/j.amc.2009.07.015
[14] Tang, H.; Chen, L.; Lu, J.; Tse, C. K.: Adaptive synchronization between two complex networks with nonidentical topological structures, Physica A 387, 5623-5630 (2008)
[15] Zheng, S.; Bi, Q.; Cai, G.: Adaptive projective synchronization in complex networks with time-varying coupling delay, Physics letters A 373, 1553-1559 (2009) · Zbl 1228.05267 · doi:10.1016/j.physleta.2009.03.001
[16] Zheng, S.; Dong, G.; Bi, Q.: Impulsive synchronization of complex networks with non-delayed and delayed coupling, Physics letters A 373, 4255-4259 (2009) · Zbl 1234.05220
[17] Chang, S. S. L.; Peng, T. K. C.: Adaptive guaranteed cost control of systems with uncertain parameters, IEEE trans. Automat. control 17, No. 4, 474-483 (1972) · Zbl 0259.93018 · doi:10.1109/TAC.1972.1100037
[18] Petersen, I. R.; Mcfarlane, D. C.: Optimal guaranteed cost control and filtering for uncertain linear systems, IEEE trans. Automat. control 39, No. 9, 1971-1977 (1994) · Zbl 0817.93025 · doi:10.1109/9.317138
[19] Petersen, I. R.: Guaranteed cost LQG control of uncertain linear systems, IEE proc. Control theory appl. 142, No. 2, 95-102 (1995) · Zbl 0822.93063 · doi:10.1049/ip-cta:19951732
[20] Park, J. H.: Guaranteed cost stabilization of neutral differential systems with parametric uncertainty, Journal of computational and applied mathematics 151, 371-382 (2003) · Zbl 1038.93044 · doi:10.1016/S0377-0427(02)00751-3
[21] Park, J. H.; Jung, H. Y.; Park, J. I.; Lee, S. G.: Decentralized dynamic output feedback controller design for guaranteed cost stabilization of large-scale discrete-delay systems, Applied mathematics and computation 156, 307-320 (2004) · Zbl 1108.93007 · doi:10.1016/j.amc.2003.07.021
[22] Xiao, X.; Mao, Z.: Decentralized guaranteed cost stabilization of time-delay large-scale systems base don reduced-order observers, Journal of the franklin institute 348, 2689-2700 (2011) · Zbl 1239.93109
[23] Dou, C. X.; Duan, Z. S.; Jia, X. B.; Niu, P. F.: Study of delay-independent decentralized guaranteed cost control for large scale systems, International journal of control, automation, and systems 9, 478-488 (2011)
[24] Park, J. H.: Convex optimization approach to dynamic output feedback control for delay differential systems of neutral type, Journal of optimization theory and applications 127, 411-423 (2005) · Zbl 1113.93048 · doi:10.1007/s10957-005-6552-7
[25] Boyd, B.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994) · Zbl 0816.93004
[26] Scherer, C.; Gahinet, P.; Chilali, M.: Multiobjective output-feedback control via LMI optimization, IEEE transactions on automatic control 42, 896-911 (1997) · Zbl 0883.93024 · doi:10.1109/9.599969
[27] Chua, L. O.; Komuro, M.; Matsumoto, T.: The double scroll family, IEEE transactions on circuits and systems I 33, 1072-1118 (1986) · Zbl 0634.58015 · doi:10.1109/TCS.1986.1085869