zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Kirchhoff index in line, subdivision and total graphs of a regular graph. (English) Zbl 1239.05053
Summary: Let $G$ be a connected regular graph and $l(G), s(G), t(G)$ the line, subdivision, total graphs of $G$, respectively. In this paper, we derive formulae and lower bounds of the Kirchhoff index of $l(G), s(G)$ and $t(G)$, respectively. In particular, we give special formulae for the Kirchhoff index of $l(G), s(G)$ and $t(G)$, where G is a complete graph $K_{n}$, a regular complete bipartite graph $K_{n,n}$ and a cycle $C_{n}$.

MSC:
05C12Distance in graphs
05C62Graph representations
WorldCat.org
Full Text: DOI
References:
[1] Babić, D.; Klein, D. J.; Lukovits, I.; Nikolić, S.; Trinajstić, N.: Resistance--distance matrix: a computational algorithm and its applications, Int. J. Quantum chem. 90, 166-176 (2002)
[2] Balaban, A. T.; Liu, X.; Klein, D. J.; Babic, D.; Schmalz, T. G.; Seitz, W. A.; Randić, M.: Graph invariants for fullerenes, J. chem. Inf. comput. Sci. 35, 396-404 (1995)
[3] Bonchev, D.; Balaban, A. T.; Liu, X.; Klein, D. J.: Molecular cyclicity and centricity of polycyclic graphs. I: cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum chem. 50, 1-20 (1994)
[4] Cvetković, D. M.; Doob, M.; Sachs, H.: Spectra of graphs, (1995) · Zbl 0824.05046
[5] Fowler, P. W.: Resistance distances in fullerene graphs, Croat. chem. Acta 75, 401-408 (2002)
[6] Gutman, I.; Mohar, B.: The quasi-Wiener and the Kirchhoff indices coincide, J. chem. Inf. comput. Sci. 36, 982-985 (1996)
[7] A.K. Kel’Mans, Kibernetiky--na sluzbu kommunizmu 4 Energija, Moskvz--Leningrad, 1967, pp. 27--41 (in Russian).
[8] Klein, D. J.: Resistance--distance sum rules, Croat. chem. Acta 75, 633-649 (2002)
[9] Klein, D. J.; Lukovits, I.; Gutman, I.: On the definition of the hyper-Wiener index for cycle-containing structures, J. chem. Inf. comput. Sci. 35, 50-52 (1995)
[10] Klein, D. J.; Randić, M.: Resistance distance, J. math. Chem. 12, 81-95 (1993)
[11] Lukovits, I.; Nikolić, S.; Trinajstić, N.: Resistance distance in regular graphs, Int. J. Quantum chem. 71, 217-225 (1999)
[12] Merris, R.: Laplacian matrices of graphs: a survey, Linear algebra appl. 197--198, 143-176 (1994) · Zbl 0802.05053 · doi:10.1016/0024-3795(94)90486-3
[13] Palacios, J. L.: Closed form formulae for Kirchhoff index, Int. J. Quantum chem. 81, 135-140 (2001)
[14] Palacios, J. L.: Resistance distance in graphs and random walks, Int. J. Quantum chem. 81, 29-33 (2001)
[15] Palacios, J. L.: Foster’s formulas via probability and the Kirchhoff index, Methodol. comput. Appl. probab. 6, 381-387 (2004)
[16] Wiener, H.: Structural determination of paraffin boiling points, J. am. Chem. soc. 69, 17-20 (1947)
[17] Wilson, R. J.: Introduction to graph theory, (1982) · Zbl 0489.03017
[18] Xiao, W. J.; Gutman, I.: Resistance distance and Laplacian spectrum, Theor. chem. Acc. 110, 284-289 (2003)
[19] Xu, H.: The Laplacian spectrum and Kirchhoff index of product and lexicographic product of graphs, J. Xiamen univ. (Nat. Sci.) 42, 552-554 (2003) · Zbl 1162.05335
[20] Zhang, H.; Yang, Y.; Li, C.: Kirchhoff index of composite graphs, Discrete appl. Math. 157, 2918-2927 (2009) · Zbl 1209.05149 · doi:10.1016/j.dam.2009.03.007
[21] Zhou, B.; Trinajstić, N.: A note on Kirchhoff index, Chem. phys. Lett. 455, 120-123 (2008)
[22] Zhu, H. Y.; Klein, D. J.; Lukovits, I.: Extensions of the Wiener number, J. chem. Inf. comput. Sci. 36, 420-428 (1996)