×

Bipolar fuzzy graphs. (English) Zbl 1239.05156

Summary: In this paper, we introduce the notion of bipolar fuzzy graphs, describe various methods of their construction, discuss the concept of isomorphisms of these graphs, and investigate some of their important properties. We then introduce the notion of strong bipolar fuzzy graphs and study some of their properties. We also discuss some propositions of self complementary and self weak complementary strong bipolar fuzzy graphs.

MSC:

05C72 Fractional graph theory, fuzzy graph theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akram, M., Cofuzzy graphs, Journal of fuzzy mathematics, 19, 4, (2011) · Zbl 1271.05081
[2] Akram, M., Intuitionistic (S,T)-fuzzy Lie ideals of Lie algebras, Quasigroups and related systems, 15, 201-218, (2007) · Zbl 1132.17307
[3] Akram, M.; Dar, K.H., Generalized fuzzy K-algebras, (2010), VDM Verlag · Zbl 1113.06014
[4] Alaoui, A., On fuzzification of some concepts of graphs, Fuzzy sets and systems, 101, 363-389, (1999) · Zbl 0934.05099
[5] Atanassov, K.T., Intuitionistic fuzzy fets: theory and applications, Studies in fuzziness and soft computing, (1999), Physica-Verl. Heidelberg, New York · Zbl 0939.03057
[6] K.T. Atanassov, Index matrix representation of the intuitionistic fuzzy graphs, Preprint MRL-MFAIS-10-94, Sofia, 1994, pp. 36-41.
[7] K.T. Atanassov, G. Pasi, R. Yager, V. Atanassova, Intuitionistic fuzzy graph interpretations of multi-person multi-criteria decision making, in; EUSFLAT Conference 2003, pp. 177-182.
[8] Bhattacharya, P., Some remarks on fuzzy graphs, Pattern recognition letter, 6, 297-302, (1987) · Zbl 0629.05060
[9] Bhutani, K.R., On automorphism of fuzzy graphs, Pattern recognition letter, 9, 159-162, (1989) · Zbl 0800.68740
[10] Bhutani, K.R.; Rosenfeld, A., Strong arcs in fuzzy graphs, Information sciences, 152, 319322, (2003)
[11] Bhutani, K.R.; Rosenfeld, A., Fuzzy end nodes in fuzzy graphs, Information science, 152, 323-326, (2003) · Zbl 1040.03519
[12] Bhutani, K.R.; Battou, A., On M-strong fuzzy graphs, Information sciences, 155, 103-109, (2003) · Zbl 1033.05095
[13] Bloch, I., Dilation and erosion of spatial bipolar fuzzy sets, Lecture notes in artificial intelligence, 385-393, (2007) · Zbl 1182.68296
[14] Bloch, I., Geometry of spatial bipolar fuzzy sets based on bipolar fuzzy numbers and mathematical morphology, Fuzzy logic and applications, lecture notes in computer science, 5571, 237-245, (2009) · Zbl 1182.68327
[15] Boulmakoul, A., Fuzzy graphs modelling for hazmat telegeomonitoring, European journal of operational research, 175, 3, 1514-1525, (2006) · Zbl 1142.90419
[16] Chen, J.C.; Tsai, C.H., Conditional edge-fault-tolerant Hamiltonicity of dual-cubes, Information sciences, 181, 620-627, (2011) · Zbl 1214.68024
[17] Cheng, C.T.; Ou, C.P.; Chau, K.W., Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration, Journal of hydrology, 268, 1-4, 72-86, (2002)
[18] D. Dubois, S. Kaci, H. Prade, Bipolarity in reasoning and decision, an introduction, in: Int. Con. on Inf. Pro. Man. Unc. IPMU’04, 2004, pp. 959-966.
[19] Fang, J.F., The bipancycle-connectivity of the hypercube, Information science, 178, 4679-4687, (2008) · Zbl 1163.68311
[20] Harary, F., Graph theory, (1972), Addison-Wesley Reading, MA · Zbl 0797.05064
[21] Homenda, W.; Pedrycz, W., Balanced fuzzy gates, Rsctc, 107-116, (2006) · Zbl 1162.94430
[22] K.P. Huber, M.R. Berthold, Application of fuzzy graphs for metamodeling, in: Proceedings of the 2002 IEEE Conference, pp. 640-644.
[23] M.G. Karunambigai, P. Rangasamy, K.T. Atanassov, N. Palaniappan, An intuitionistic fuzzy graph method for finding the shortest paths in networks, in: O. Castillo et al. (Eds.), Theor. Adv. and Appl. of Fuzzy Logic, vol. 42, ASC, 2007, pp. 3-10.
[24] Kiss, A., An application of fuzzy graphs in database theory, Pure mathematics and applications, 1, 3-4, 337-342, (1991) · Zbl 0736.68023
[25] Koczy, L.T., Fuzzy graphs in the evaluation and optimization of networks, Fuzzy sets and systems, 46, 307-319, (1992) · Zbl 0761.05092
[26] K.-M. Lee, Bipolar-valued fuzzy sets and their basic operations, in: Proceedings of the International Conference, Bangkok, Thailand, 2000, pp. 307-317.
[27] Lee, K.-M., Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets, Journal of fuzzy logic intelligent systmes, 14, 125-129, (2004)
[28] Li, Y., Finite automata theory with membership values in lattices, Information sciences, 181, 1003-1017, (2011) · Zbl 1209.68302
[29] -Y Lin, J.; Cheng, C.T.; Chau, K.-W., Using support vector machines for long-term discharge prediction, Hydrological sciences journal, 51, 4, 599-612, (2006)
[30] Mathew, S.; Sunitha, M.S., Types of arcs in a fuzzy graph, Information sciences, 179, 11, 1760-1768, (2009) · Zbl 1200.05122
[31] Mathew, S.; Sunitha, M.S., Node connectivity and arc connectivity of a fuzzy graph, Information sciences, 180, 4, 519-531, (2010) · Zbl 1233.05163
[32] Mordeson, J.N.; Peng, C.S., Operations on fuzzy graphs, Information sciences, 79, 159-170, (1994) · Zbl 0804.05069
[33] Mordeson, J.N., Fuzzy line graphs, Pattern recognition letter, 14, 381-384, (1993) · Zbl 0785.05069
[34] J.N. Mordeson, P.S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs, second ed., Physica Verlag, Heidelberg, 1998, 2001. · Zbl 0947.05082
[35] Mordeson, J.N.; Nair, P.S., Cycles and cocyles of fuzzy graphs, Information science, 90, 39-49, (1996) · Zbl 0905.68095
[36] Muttil1, N.; Chau, K.W., Neural network and genetic programming for modelling coastal algal blooms, International journal of environment and pollution, 28, 3-4, 223-238, (2006)
[37] Nagoorgani, A.; Radha, K., Isomorphism on fuzzy graphs, International journal of computational and mathematical sciences, 2, 190-196, (2008) · Zbl 1153.05310
[38] Pang, C.; Zhang, R.; Zhang, Q.; Wang, J., Dominating sets in directed graphs, Information sciences, 180, 3647-3652, (2010) · Zbl 1231.05208
[39] Perchant, A.; Bloch, I., Fuzzy morphisms between graphs, Fuzzy sets and systems, 128, 149-168, (2002) · Zbl 1005.05041
[40] R. Parvathi, M.G. Karunambigai, K.T. Atanassov, Operations on intuitionistic fuzzy graphs, in: Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE International Conference, pp. 1396-1401.
[41] G. Pasi, R. Yager, K.T. Atanassov, Intuitionistic fuzzy graph interpretations of multi-person multi-criteria decision making: generalized net approach, in: Intelligent Systems, Proceedings of the 2004 2nd International IEEE Conference, vol. 2, 2004, pp. 434-439.
[42] Pedrycz, W., Fuzzy sets engineering, (1995), CRC Press Boca Raton, FL · Zbl 0925.93507
[43] Pedrycz, W., Human centricity in computing with fuzzy sets: an interpretability quest for higher order granular constructs, J. ambient intelligence and humanized computing, 1, 1, 65-74, (2010)
[44] Pedrycz, W.; Bargiela, A., Fuzzy clustering with semantically distinct families of variables: descriptive and predictive aspects, Pattern recognition letters, 31, 13, 1952-1958, (2010)
[45] Rosenfeld, A., Fuzzy graphs, (), 77-95
[46] M.S. Sunitha, A. Vijayakumar, Complement of a fuzzy graph, Indian Journal of Pure and Applied Mathematics 33(9), pp. 1451-1464. · Zbl 1013.05081
[47] A. Shannon, K.T. Atanassov, A first step to a theory of the intuitionistic fuzzy graphs, in: D. Lakov (Ed.), Proceeding of FUBEST, Sofia, Sept. 28-30 1994 pp. 59-61.
[48] Shannon, A.; Atanassov, K.T., Intuitionistic fuzzy graphs from α-, β-, and (α,b)-levels, Notes on intuitionistic fuzzy sets, 1, 1, 32-35, (1995) · Zbl 0850.05003
[49] Wu, L.; Shan, E.; Liu, Z., On the k-tuple domination of generalized de brujin and kautz digraphs, Information sciences, 180, 4430-4435, (2010) · Zbl 1272.05153
[50] Xie, J.X.; Cheng, C.T.; Chau, K.W.; Pei, Y.Z., A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity, International journal of environment and pollution, 28, 3-4, 364-381, (2006)
[51] Zadeh, L.A., Fuzzy sets, Information and control, 8, 338-353, (1965) · Zbl 0139.24606
[52] Zadeh, L.A., Similarity relations and fuzzy orderings, Information sciences, 3, 2, 177-200, (1971) · Zbl 0218.02058
[53] Zadeh, L.A., Toward a generalized theory of uncertainty (GTU) an outline, Information sciences, 172, 1-40, (2005) · Zbl 1074.94021
[54] Zadeh, L.A., From imprecise to granular probabilities, Fuzzy sets and systems, 154, 370-374, (2005) · Zbl 1106.60002
[55] Zadeh, L.A., Is there a need for fuzzy logic?, Information sciences, 178, 2751-2779, (2008) · Zbl 1148.68047
[56] W.-R. Zhang, Bipolar fuzzy sets and relations: a computational framework forcognitive modeling and multiagent decision analysis, Proceedings of IEEE Conf., 1994, pp. 305-309.
[57] Zhang, W.-R., Bipolar fuzzy sets, Proceedings of FUZZ-IEEE, 835-840, (1998)
[58] Zhang, J.; Yang, X., Some properties of fuzzy reasoning in propositional fuzzy logic systems, Information sciences, 180, 4661-4671, (2010) · Zbl 1214.03018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.