zbMATH — the first resource for mathematics

Witten multiple zeta values attached to \(\mathfrak {sl}(4)\). (English) Zbl 1239.11100
Let \[ \zeta_{d}((s_{\mathbf i})_{{\mathbf i}\subseteq [d]}):=\sum_{m_{1},...,m_{d}=1}^{\infty}\prod _{{\mathbf i}\subseteq [d]}(\sum_{j=1}^{lg({\mathbf i})}m_{i_{j}})^{-s_{\mathbf i}}. \] In this paper, the authors prove that every Witten multiple zeta value of weight \(w>3\) attached to \(\mathfrak {sl}(4)\) at nonnegative integer arguments is a finite \(\mathbb Q\)-linear combination of MZVs of weight \(w\) and depth three or less, except for the nine irregular cases where the Riemann zeta value \(\zeta(w-2)\) and the double zeta values of weight \(w-1\) and depth \(<3\) are also needed.
The authors use a series of reductions to prove the result.

11M41 Other Dirichlet series and zeta functions
11M32 Multiple Dirichlet series and zeta functions and multizeta values
Full Text: DOI arXiv
[1] S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith., 98 (2001), 107-116. · Zbl 0972.11085
[2] M. Bigotte, G. Jacob, N. E. Oussous, M. Petitot and H. N. Minh, Table of the coloured zeta function, with 1 roots, up to the weight 12 ,
[3] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisoněk, Combinatorial aspects of multiple zeta values, Electron. J. Combin., 5 (1998), Research Paper 38. · Zbl 0904.05012
[4] J. Borwein, P. Lisonek and P. Irvine, An interface for evaluation of Euler sums, http://oldweb., cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi M. de Crisenoy, Values at \(T\)-tuples of negative integers of twisted multivariable zeta series associated to polynomials of several variables, Compositio Math., 142 (2006), 1373-1402. · Zbl 1142.11065
[5] D. Essouabri, Singularités des séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres, Ann. Inst. Fourier, 47 (1997), 429-483. · Zbl 0882.11051
[6] L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol., 20 (1775), 140-186, reprinted in “Opera Omnia,” series I, 15 , B. G. Teubner, Berlin (1927), 217-267.
[7] P. E. Gunnells and R. Sczech, Evaluation of Dedekind sums, Eisenstein cocycles, and special values of \(L\)-functions, Duke Math. J., 118 (2003), 229-260. · Zbl 1047.11041
[8] M. E. Hoffman, Multiple harmonic series, Pacific J. Math., 152 (1992), 275-290. · Zbl 0763.11037
[9] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compositio Math., 142 (2006), 307-338. · Zbl 1186.11053
[10] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Math. 84 , 2nd ed., Springer, 1998.
[11] Y. Komori, K. Matsumoto and H. Tsumura, Zeta functions of root systems, in: The Conference on \(L\)-Functions, World Sci. Publ., Hackensack, NJ, 2007, 115-40. · Zbl 1183.11055
[12] Y. Komori, K. Matsumoto and H. Tsumura, Zeta and \(L\)-functions and Bernoulli polynomials of root systems, Proc. Japan Acad. Ser. A, 84 (2008), 57-62. · Zbl 1147.11053
[13] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras II, J. Math. Soc. Japan, 62 (2010), 355-394. · Zbl 1210.11099
[14] Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras III, · Zbl 1210.11099
[15] K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, in: Proc. of the Session in analytic number theory and Diophantine equations, ed. D.R. Heath-Brown and B.Z. Moroz, Bonner Mathematische Schriften, 25 , 2003, 17 pages. · Zbl 1056.11049
[16] K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisimple Lie algebras I, Annales de l’institut Fourier, 56 (2006), 1457-1504. · Zbl 1168.11036
[17] L. J. Mordell, On the evaluation of some multiple series, J. London Math. Soc., 33 (1958), 368-271. · Zbl 0081.27501
[18] T. Nakamura, Double Lerch value relations and functional relations for Witten zeta functions, Tokyo J. Math., 31 (2008), 551-574. · Zbl 1181.11056
[19] Y. Ohno and W. Zudilin, Zeta stars, Commun. Number Theory Phys., 2 (2008), 325-347. · Zbl 1228.11132
[20] T. Terasoma, Rational convex cones and cyclotomic multiple zeta values, · Zbl 1003.11042
[21] L. Tornheim, Harmonic double series, Amer. J. Math., 72 (1950), 303-314. · Zbl 0036.17203
[22] H. Tsumura, On Wittens type of zeta values attached to, SO (5), Arch. Math. 82 (2004), 147-152. · Zbl 1063.40004
[23] E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys., 141 (1991), 153-209. · Zbl 0762.53063
[24] D. Zagier, Values of zeta function and their applications, in: Proc. of the First European Congress of Math., Vol., 2 , 1994, 497-512. · Zbl 0822.11001
[25] J. Zhao, Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc., 128 (1999), 1275-1283. · Zbl 0949.11042
[26] J. Zhao, Alternating Euler sums and special values of Witten multiple zeta function attached to so(5). In J. Aust. Math. Soc., 89 (2011), 419-430. doi:10.1017/S1446788711001054. · Zbl 1262.11084
[27] J. Zhao, Multi-polylogs at twelfth roots of unity and special values of Witten multiple zeta function attached to the exceptional Lie algebra \({\mathfrak g}_2\). J. Algebra Appl., 9 (2010), 327-337. · Zbl 1197.11108
[28] J. Zhao, Witten volume formulas for semi-simple Lie algebras, Proc. of the Integers Conference 2009 in Honor of the Birthdays of Melvyn Nathanson and Carl Pomerance, Integers, 11A (2010), #A22.
[29] X. Zhou and D. M. Bradley, On Mordell-Tornheim sums and multiple zeta values, Ann. Sci. Math., 34 (2010), 15-23. · Zbl 1264.11079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.