Gras, Georges Stickelberger’s congruences for absolute norms of relative discriminants. (English) Zbl 1239.11124 J. Théor. Nombres Bordx. 22, No. 2, 397-402 (2010). Let \(L/K\) be a finite extension of number fields, unramified at \(2\), \({\mathfrak d}_{L/K}\) the discriminant, \(c\) the number of complex places of \(L\) which lie above a real place of \(K\), \(\overline{N}_{K/{\mathbb Q}}({\mathfrak d}_{L/K})\) the absolute norm of \({\mathfrak d}_{L/K}\), \(k\) the maximal subfield of \( {\mathbb Q}(\mu_{2^\infty})\) contained in \(K\), \([k:{\mathbb Q}]=2^m,m\geq 0\). The author proves \[ (-1)^c\overline{N}_{K/{\mathbb Q}}({\mathfrak d}_{L/K})\equiv 1\pmod {4\cdot 2^m}. \] Reviewer: Florin Nicolae (Berlin) MSC: 11R29 Class numbers, class groups, discriminants 11R37 Class field theory Keywords:number fields; discriminants; Stickelberger congruences; class field theory PDF BibTeX XML Cite \textit{G. Gras}, J. Théor. Nombres Bordx. 22, No. 2, 397--402 (2010; Zbl 1239.11124) Full Text: DOI arXiv EuDML OpenURL References: [1] G. Gras, Class Field Theory: from theory to practice. SMM, Springer-Verlag, 2003; second corrected printing: 2005. · Zbl 1019.11032 [2] J. Martinet, Les discriminants quadratiques et la congruence de Stickelberger. Sém. Théorie des Nombres, Bordeaux 1 (1989), 197-204. · Zbl 0731.11061 [3] S. Pisolkar, Absolute norms of \(p\)-primary units. Jour. de Théorie des Nombres de Bordeaux 21 (2009), 733-740. · Zbl 1214.11131 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.