×

Solvability of a fractional boundary value problem with fractional integral condition. (English) Zbl 1239.26007

Summary: Using Banach contraction principle and Leray-Schauder nonlinear alternative we establish sufficient conditions for the existence and uniqueness of solutions for boundary value problems for fractional differential equations with fractional integral condition, involving the Caputo fractional derivative. Some examples are given to illustrate our results.

MSC:

26A33 Fractional derivatives and integrals
34B15 Nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bagley, R. L., A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology, 27, 3, 201-210 (1983) · Zbl 0515.76012
[2] Engheta, N., On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans., 44, 4, 554-566 (1996) · Zbl 0944.78506
[3] Hilfer, R., Application of Fractional Calculus in Physics (2000), World Scientific: World Scientific Singapore, 699-707
[4] Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer New York · Zbl 0917.73004
[5] Magin, R., Fractional calculus in bioengineering, Crit. Rev. Biom. Eng., 32, 1, 1-104 (2004)
[6] Nishimoto, K., Fractional Calculus and its Applications (1990), Nihon University: Nihon University Koriyama
[7] K.B. Oldham, Fractional Differential Equations in Electrochemistry, Advances in Engineering Software, 2009.; K.B. Oldham, Fractional Differential Equations in Electrochemistry, Advances in Engineering Software, 2009.
[8] Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering (1999), Academic Press: Academic Press New York, London, Toronto
[9] Sabatier, J.; Agrawal, O. P.; Machado, J. A.T., Advances in Fractional Calculus (2007), Springer-Verlag: Springer-Verlag Berlin · Zbl 1116.00014
[10] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109, 973-1033 (2010) · Zbl 1198.26004
[11] Agarwal, R. P.; Lakshmikanthama, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72, 2859-2862 (2010) · Zbl 1188.34005
[12] B. Ahmad, J.J. Nieto, Existence results for nonlinear boundary value problems of fractional integro differential equations with integral boundary conditions, Bound. Value Probl. (2009), Art. ID 708576, 11 pages.; B. Ahmad, J.J. Nieto, Existence results for nonlinear boundary value problems of fractional integro differential equations with integral boundary conditions, Bound. Value Probl. (2009), Art. ID 708576, 11 pages.
[13] B. Ahmad, J.J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., doi:10.1016/j.nonrwa.2011.07.052; B. Ahmad, J.J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., doi:10.1016/j.nonrwa.2011.07.052 · Zbl 1238.34008
[14] Arara, A.; Benchohra, M.; Hamidia, N.; Nieto, J. J., Fractional order differential equations on an unbounded domain, Nonlinear Anal., 72, 580-586 (2010) · Zbl 1179.26015
[15] Bai, Z.; Liu, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311, 2, 495-505 (2005) · Zbl 1079.34048
[16] Chang, Y-K.; Nieto, J. J., Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling, 49, 3-4, 605-609 (2009) · Zbl 1165.34313
[17] Chen, F.; Nieto, J. J.; Zhou, Y., Global attractivity for nonlinear fractional differential equations, Nonlinear Anal. Real World Appl., 13, 287-298 (2012) · Zbl 1238.34011
[18] Guezane-Lakoud, A.; Khaldi, R., Study of a third-order three-point boundary value problem, AIP Conf. Proc., 1309, 329-335 (2010)
[19] Khan, R. A., Existence and approximation of solutions of nonlinear problems with integral boundary conditions, Dynam. Systems Appl., 14, 281-296 (2005) · Zbl 1090.34012
[20] Khan, R. A.; Rehman, M. R.; Henderson, J., Existence and uniqueness of solutions for nonlinear fractional differential equations with integral boundary conditions, Fractional Diff. Eq., 1, 1, 29-43 (2011) · Zbl 1412.34034
[21] Guezane-Lakoud, A.; Belakroum, D., Rothe’s method for telegraph equation with integral conditions, Nonlinear Anal., 70, 3842-3853 (2009) · Zbl 1171.35306
[22] Delbosco, D.; Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204, 609-625 (1996) · Zbl 0881.34005
[23] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Differential Equations (1993), John Wiley: John Wiley New York · Zbl 0789.26002
[24] Kilbas, A.; Srivastava, Hari M.; Trujillo, Juan J., (Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Elsevier Science: Elsevier Science B.V. Amsterdam) · Zbl 1092.45003
[25] Deimling, K., Nonlinear Functional Analysis (1985), Springer-Verlag: Springer-Verlag Berlin · Zbl 0559.47040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.