Han, Pigong Regularity of weak solutions to 3D incompressible Navier-Stokes equations. (English) Zbl 1239.35110 J. Evol. Equ. 10, No. 1, 195-204 (2010). Summary: We establish some new local and global regularity properties for weak solutions of 3D non-stationary Navier-Stokes equations in the class of \(L^r (0,T;L^3(\Omega))\) with \(r \in [1,\infty)\), which are beyond Serrin’s condition. Cited in 2 Documents MSC: 35Q30 Navier-Stokes equations 35B65 Smoothness and regularity of solutions to PDEs 76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids 76D05 Navier-Stokes equations for incompressible viscous fluids 35D30 Weak solutions to PDEs Keywords:Navier-Stokes equations; weak solution; existence PDF BibTeX XML Cite \textit{P. Han}, J. Evol. Equ. 10, No. 1, 195--204 (2010; Zbl 1239.35110) Full Text: DOI References: [1] Beirão da Veiga H. (2000) On the smoothness of a class of weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 2: 315–323 · Zbl 0972.35089 [2] Borchers W., Miyakawa T. (1990) Algebraic L 2 decay for the Navier–Stokes flows in exterior domains. Acta Math. 165: 189–227 · Zbl 0722.35014 [3] Caffarelli L., Kohn R., Nirenberg L. (1982) Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure. Appl. Math. 35: 771–831 · Zbl 0509.35067 [4] Chae D., Choe H.J. (1999) Regularity of solutions to the Navier–Stokes equation. Electron. J. Differential Equations. 5: 1–7 · Zbl 0939.35149 [5] Desch W., Hieber M., Pruss J. (2001) L p -theory of the Stokes equation in a half-space. J. Evol. Equations. 1: 115–142 · Zbl 0983.35102 [6] Farwig, R., Komo, C.: Regularity of weak solutions to the Navier–Stokes equations in exterior domains. TU Darmstadt, Department of Mathematics, Preprint. no. 2588 (2009). · Zbl 1189.76115 [7] Farwig R., Kozono H., Sohr H. (2007) Local in time regularity properties of the Navier–Stokes equations. Indiana Univ. Math. J. 56: 2111–2132 · Zbl 1175.35100 [8] Farwig R., Kozono H., Sohr H. (2007) Very weak, weak and strong solutions to the instationary Navier–Stokes system. J. Necas Center for Mathematical Modeling. 2: 15–68 · Zbl 1107.76022 [9] Farwig R., Galdi P., Sohr H. (2006) A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data. J. Math. Fluid Mech. 8: 423–444 · Zbl 1104.35032 [10] Farwig R., Sohr H. (2009) Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations. Math. Ann. 345: 631–642 · Zbl 1173.35096 [11] Farwig R., Sohr H., Varnhorn W. (2009) On optimal initial value conditions for local strong solutions of the Navier–Stokes equations. Ann. Univ. Ferrara, Sez. VII, 55: 89–110 · Zbl 1179.35210 [12] Giga Y., Matsui S., Shimizu Y. (1999) On estimates in Hardy spaces for the Stokes flow in a half space. Math. Z. 231: 383–396 · Zbl 0928.35118 [13] Kozono H., Sohr H. (1996) Remark on uniqueness of weak solutions to the Navier–Stokes equations. Analysis. 16: 255–271 · Zbl 0864.35082 [14] Masuda K. (1984) Weak solutions of the Navier–Stokes equations. Tohoku Math. J. 36: 623–646 · Zbl 0568.35077 [15] Neustupa, J., Novotný, A., Penel, P.: An interior regularity of a weak solution to the Navier–Stokes equations in dependence on one component of velocity. In: Galdi, G. P., Rannacher, R. (eds.) Topics in mathematical fluid mechanics, pp. 168–183. Napoli (2003). · Zbl 1050.35073 [16] Neustupa J., Penel P. (1999) Regularity of a suitable weak solution to the Navier–Stokes equations as a consequence of regularity of one velocity component. Kluwer Academic/Plemum Publishers, New York · Zbl 0953.35113 [17] Neustupa J., Penel P. (2001) Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier–Stokes equations. In: Neustupa J., Penel P. (eds) Mathematical Fluid Mechanics, Recent Results and Open Problems. Birkhauser-Verlag, Basel, pp 237–268 · Zbl 1027.35094 [18] Seregin G. (2007) Navier–Stokes equations: almost L 3, case. J. Math. Fluid Mech. 9: 34–43 · Zbl 1128.35085 [19] Sohr H., von Wahl W. (1986) On the regularity of the pressure of weak solutions of Navier–Stokes equations. Arch. Math. 46: 428–439 · Zbl 0574.35070 [20] Sohr H., von Wahl W. (1984) On the singular set and the uniqueness of weak solutions of Navier–Stokes equations. Manuscripta Math. 49: 27–59 · Zbl 0567.35069 [21] Serrin, J.: The initial value problem for the Navier–Stokes equations. Nonlinear Problems, Proc. Sympos. Madison, Wis. pp. 69–98. Univ. of Wisconsin Press, Madison, Wis (1963). · Zbl 0115.08502 [22] Serrin J. (1962) On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 9: 187–195 · Zbl 0106.18302 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.