Li, Yongsheng; Yan, Wei; Yang, Xingyu Well-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity. (English) Zbl 1239.35141 J. Evol. Equ. 10, No. 2, 465-486 (2010). Summary: We consider the Cauchy problem for a higher-order modified Camassa-Holm equation. By using the Fourier restriction norm method introduced by J. Bourgain [Geom. Funct. Anal. 3, 209–262 (1993; Zbl 0787.35098)], we establish local well-posedness for initial data in \(H^s(\mathbb{R})\) with \(s>-n+5/4\), \(n\in {\mathbb{N}}^+\). As a consequence of the conservation of the energy \({\| u\|_{H^1(\mathbb{R})}}\), we have the global well-posedness for initial data in \({H^1(\mathbb{R})}\). Cited in 1 ReviewCited in 9 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs Keywords:well-posedness; modified Camassa-Holm equation; Fourier restriction norm method; bilinear estimates Citations:Zbl 0787.35098 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Evol. Equ. 10, No. 2, 465--486 (2010; Zbl 1239.35141) Full Text: DOI References: [1] Bressan A., Constantin A.: Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal. 183, 215–239 (2007) · Zbl 1105.76013 [2] Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: The Schrödinger equation, Part II: The KdV equation, Geom. Funct. Anal. 3, 107–156, 209–262 (1993) · Zbl 0787.35097 [3] Byers P. J.,: The initial value problem for a KdV-type equation and related bilinear estimate, Dissertation, University of Notre Dame (2003) [4] Camassa R., Holm D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) · Zbl 0936.35153 [5] Camassa R., Holm D., Hyman J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994) · Zbl 0808.76011 [6] Christ M., Colliander J., Tao T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math. 125, 1235–1293 (2003) · Zbl 1048.35101 [7] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Sharp global well- posedness for KdV and modified KdV on R and T. J. Amer. Math. Soc. 16, 705–749 (2003) · Zbl 1025.35025 [8] Constantin A., Escher J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm Sup. Pisa Cl. Sci. 26, 303–328 (1998) · Zbl 0918.35005 [9] Ginibre, J.: Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), Asteŕisque, (237): Exp. No. 796, 4, 163–187, 1996. Séminaire Bourbaki, Vol. 1994/95. [10] Ginibre J., Tsutsumi Y., Velo G.: On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151, 384–436 (1997) · Zbl 0894.35108 [11] Grünrock, A.: New applications of the Fourier restriction norm method to well-posedness problems for nonlinear evolution equations, Dissertation, University of Wuppertal. 2002 [12] Guo B.L., Huo Z.H.: The global attractor of the damped forced Ostrovsky equation. J. Math. Anal. Appl. 329, 392–407 (2007) · Zbl 1123.35054 [13] Guo Z.H.: Global well-posedness of the Kortegweg-de Vries equation in H /4(R). J. Math. Pures Appl. 91, 583–597 (2009) · Zbl 1173.35110 [14] Herr, S.: Well-posedness results for dispersive equations with derivative nonlinearities, Dissertation, Dem Fachbereich Mathematik der Universität Dortmund vorgelegt von. 2006 [15] Himonas A.A., Misiolek G.: The Cauchy problem for a shallow water type equation. Comm. P. D. E. 23, 123–139 (1998) · Zbl 0895.35021 [16] Himonas A.A., Misiolek G.: Well-posedness of the Cauchy problem for a shallow water equation on the circle. J. Differential Equations 161, 479–495 (2000) · Zbl 0945.35073 [17] Kenig C.E., Ponce G., Vega L.: Oscillatory integrals and regularity of dispersive equations. India. Univ. Mah. J. 40, 33–69 (1991) · Zbl 0738.35022 [18] Kenig C.E., Ponce G., Vega L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Amer. Math. Soc. 4, 323–347 (1991) · Zbl 0737.35102 [19] Kenig C.E., Ponce G., Vega L.: The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices. Duke Math. J. 71, 1–21 (1993) · Zbl 0787.35090 [20] Kenig C.E., Ponce G., Vega L.: A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9, 573–603 (1996) · Zbl 0848.35114 [21] Olson E.A.: Well-posedness for a higher-order modified Camassa-Holm equation. J. Differential Equations 246, 4154–4172 (2009) · Zbl 1170.35087 [22] Wang H., Cui S.B.: Global well-posedness of the Cauchy problem of the fifth-order shallow water equation. J. Differential Equations 230, 600–613 (2006) · Zbl 1106.35068 [23] Xin Z.P., Zhang P.: On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. 53, 1411–1433 (2000) · Zbl 1048.35092 [24] Xin Z.P., Zhang P.: On the uniqueness and large time behavior of the weak solutions to a shallow water equation. Comm. P. D. E. 27, 1815–1844 (2002) · Zbl 1034.35115 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.