Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. (English) Zbl 1239.44001

Summary: Using the Mellin transform approach, it is shown that, in contrast with integer-order derivatives, the fractional-order derivative of a periodic function cannot be a function with the same period. The three most widely used definitions of fractional-order derivatives are taken into account, namely, the Caputo, Riemann-Liouville and Grunwald-Letnikov definitions. As a consequence, the non-existence of exact periodic solutions in a wide class of fractional-order dynamical systems is obtained. As an application, it is emphasized that the limit cycle observed in numerical simulations of a simple fractional-order neural network cannot be an exact periodic solution of the system.


44A15 Special integral transforms (Legendre, Hilbert, etc.)
34A08 Fractional ordinary differential equations
Full Text: DOI arXiv


[1] Reyes-Melo, E.; Martinez-Vega, J.; Guerrero-Salazar, C.; Ortiz-Mendez, U., Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials, Journal of Applied Polymer Science, 98, 923-935 (2005)
[2] Schumer, R.; Benson, D., Eulerian derivative of the fractional advection-dispersion equation, Journal of Contaminant, 48, 69-88 (2001)
[3] Heymans, N.; Bauwens, J. C., Fractal rheological models and fractional differential equations for viscoelastic behavior, Rheologica Acta, 33, 210-219 (1994)
[4] Henry, B.; Wearne, S., Existence of Turing instabilities in a two-species fractional reaction-diffusion system, SIAM Journal on Applied Mathematics, 62, 870-887 (2002) · Zbl 1103.35047
[5] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1-77 (2000) · Zbl 0984.82032
[6] Glockle, W.; Nonnenmacher, T., A fractional calculus approach to self-similar protein dynamics, Biophysical Journal, 68, 46-53 (1995)
[7] Picozzi, S.; West, B. J., Fractional Langevin model of memory in financial markets, Physical Review E, 66, 46-118 (2002)
[8] Ahmad, B.; Nieto, J. J.; Alsaedi, A.; El-Shahed, M., A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Analysis. Real World Applications, 13, 599-606 (2012) · Zbl 1238.34008
[9] Song, L.; Xu, S.; Yang, J., Dynamical models of happiness with fractional order, Communications in Nonlinear Science and Numerical Simulation, 15, 616-628 (2010) · Zbl 1221.93234
[10] Gu, R.; Xu, Y., Chaos in a fractional-order dynamical model of love and its control, (Li, S.; Wang, X.; Okazaki, Y.; Kawabe, J.; Murofushi, T.; Guan, L., Nonlinear Mathematics for Uncertainty and its Applications. Nonlinear Mathematics for Uncertainty and its Applications, Advances in Intelligent and Soft Computing, vol. 100 (2011), Springer: Springer Berlin, Heidelberg), 349-356 · Zbl 1272.91113
[11] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and Applications of Fractional Differential Equations (2006), Elsevier · Zbl 1092.45003
[12] Lakshmikantham, V.; Leela, S.; Devi, J. V., Theory of Fractional Dynamic Systems (2009), Cambridge Scientific Publishers · Zbl 1188.37002
[13] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[14] Agarwal, R. P.; de Andrade, B.; Cuevas, C., Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear Analysis. Real World Applications, 11, 3532-3554 (2010) · Zbl 1248.34004
[15] Cao, J.; Yang, Q.; Huang, Z., Optimal mild solutions and weighted pseudo-almost periodic classical solutions of fractional integro-differential equations, Nonlinear Analysis, Theory, Methods and Applications, 74, 224-234 (2011) · Zbl 1213.34089
[16] Debbouche, A.; El-Borai, M., Weak almost periodic and optimal mild solutions of fractional evolution equations, Electronic Journal of Differential Equations, 2009, 1-8 (2009) · Zbl 1171.34331
[17] Bai, C., Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, Journal of Mathematical Analysis and Applications, 384, 211-231 (2011) · Zbl 1234.34005
[18] Belmekki, M.; Nieto, J. J.; Rodriguez-Lopez, R., Existence of periodic solution for a nonlinear fractional differential equation, Boundary Value Problems, 2009, 1-18 (2009) · Zbl 1181.34006
[19] Nieto, J. J., Maximum principles for fractional differential equations derived from Mittag-Leffler functions, Applied Mathematics Letters, 23, 1248-1251 (2010) · Zbl 1202.34019
[20] Wei, Z.; Dong, W.; Che, J., Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative, Nonlinear Analysis. Theory, Methods & Applications, 73, 3232-3238 (2010) · Zbl 1202.26017
[21] Fikioris, G., Mellin-Transform Method for Integral Evaluation (2007), Morgan & Claypool
[22] Flajolet, P.; Gourdon, X.; Dumas, P., Mellin transforms and asymptotics: harmonic sums, Theoretical Computer Science, 144, 3-58 (1995) · Zbl 0869.68057
[23] Tavazoei, M.; Haeri, M., A proof for non existence of periodic solutions in time invariant fractional order systems, Automatica, 45, 1886-1890 (2009) · Zbl 1193.34006
[24] Tavazoei, M., A note on fractional-order derivatives of periodic functions, Automatica, 46, 945-948 (2010) · Zbl 1191.93062
[25] Ishteva, M.; Boyadjiev, L.; Scherer, R., On the Caputo operator of fractional calculus and \(C\)-Laguerre functions, Mathematical Sciences Research Journal, 9, 161-170 (2005) · Zbl 1078.26007
[26] Barbosa, R. S.; Machado, J. T.; Vinagre, B.; Calderón, A., Analysis of the Van der Pol oscillator containing derivatives of fractional order, Journal of Vibration and Control, 13, 1291-1301 (2007) · Zbl 1158.70009
[27] Cafagna, D.; Grassi, G., Bifurcation and chaos in the fractional-order Chen system via a time-domain approach, International Journal of Bifurcation and Chaos, 18, 1845-1863 (2008) · Zbl 1158.34300
[28] Cafagna, D.; Grassi, G., Fractional-order Chua’s circuit: time-domain analysis, bifurcation, chaotic behavior and test for chaos, International Journal of Bifurcation and Chaos, 18, 615-639 (2008) · Zbl 1147.34302
[29] Zhang, W.; Zhou, S.; Li, H.; Zhu, H., Chaos in a fractional-order Rössler system, Chaos, Solitons and Fractals, 42, 1684-1691 (2009) · Zbl 1198.34001
[30] Abd-Elouahab, M. S.; Hamri, N. E.; Wang, J., Chaos control of a fractional-order financial system, Mathematical Problems in Engineering, 2010, 1-18 (2010) · Zbl 1195.91185
[31] Lundstrom, B.; Higgs, M.; Spain, W.; Fairhall, A., Fractional differentiation by neocortical pyramidal neurons, Nature Neuroscience, 11, 1335-1342 (2008)
[32] Arena, P.; Fortuna, L.; Porto, D., Chaotic behavior in noninteger-order cellular neural networks, Physical Review E, 61, 776-781 (2000)
[33] Matsuzaki, T.; Nakagawa, M., A chaos neuron model with fractional differential equation, Journal of the Physical Society of Japan, 72, 2678-2684 (2003)
[34] I. Petras, A note on the fractional-order cellular neural networks, in: IEEE International Conference on Neural Networks, pp. 1021-1024.; I. Petras, A note on the fractional-order cellular neural networks, in: IEEE International Conference on Neural Networks, pp. 1021-1024.
[35] Boroomand, A.; Menhaj, M., Fractional-order Hopfield neural networks, (Lecture Notes in Computer Science. Lecture Notes in Computer Science, LNCS, vol. 5506 (2009)), 883-890
[36] Kaslik, E.; Sivasundaram, S., Dynamics of fractional-order neural networks, (Proceedings of the International Joint Conference on Neural Networks, San Jose, California, USA, July 31-August 5, 2011 (2011), IEEE Computer Society Press), 611-618
[37] Butzer, P. L.; Westphal, U., An introduction to fractional calculus, (Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific), 1-86 · Zbl 0987.26005
[38] Hilfer, R., Threefold introduction to fractional derivatives, (Klages, R.; Radons, G.; Sokolov, I. M., Anomalous Transport: Foundations and Applications (2008), Wiley-VCH), 17-74
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.