×

zbMATH — the first resource for mathematics

Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below. (English) Zbl 1239.53085
Summary: We consider complete (possibly non-compact) three dimensional Riemannian manifolds \((M,g)\) such that:
(a)
\((M,g)\) is non-collapsed (i.e., the volume of an arbitrary ball of radius one is bounded from below by \(v>0\)),
(b)
the Ricci curvature of \((M,g)\) is bounded from below by \(k\),
(c)
the geometry at infinity of \((M,g)\) is not too extreme (or \((M,g)\) is compact).
Given such initial data \((M,g)\) we show that a Ricci flow exists for a short time interval \([0,T)\), where \(T = T(v,k) > 0\). This enables us to construct a Ricci flow of any (possibly singular) metric space \((X,d)\) which arises as a Gromov-Hausdorff (GH) limit of a sequence of 3-manifolds which satisfy (a), (b) and (c) uniformly. As a corollary we show that such an \(X\) must be a manifold. This shows that the conjecture of M. Anderson–J. Cheeger–T. Colding–G. Tian is correct in dimension three.

MSC:
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Anderson M., J. Di{\currency}. Geom. 31 pp 265– (1990)
[2] DOI: 10.1007/BF01233434 · Zbl 0711.53038
[3] DOI: 10.4007/annals.2008.167.1079 · Zbl 1185.53073
[4] Cao H. D., Asian J. Math. 10 pp 165– (2006) · Zbl 1200.53057
[5] Cheeger J., J. Di{\currency}. Geom. 46 pp 406– (1997)
[6] DOI: 10.1007/PL00012649 · Zbl 1030.53046
[7] Cheeger J., J. Di{\currency}. Geom. 17 pp 15– (1982)
[8] Chen B.-L., J. Di{\currency}. Geom. 74 pp 177– (2006)
[9] DOI: 10.1007/BF01232278 · Zbl 0707.53008
[10] Eguchi T., Phys. Lett. 74 pp 249– (1978)
[11] Hamilton R. S., J. Di{\currency}. Geom. 17 pp 255– (1982)
[12] Hamilton R. S., J. Di{\currency}. Geom. 24 pp 153– (1986)
[13] DOI: 10.2307/2375080 · Zbl 0840.53029
[14] Huisken G., J. Di{\currency}. Geom. 17 pp 47– (1985)
[15] DOI: 10.1016/0926-2245(93)90008-O · Zbl 0788.53034
[16] Ni L., Comm. Anal. Geom. 12 pp 111– (2004) · Zbl 1067.53054
[17] Shi W.-X., J. Di{\currency}. Geom. 30 pp 223– (1989)
[18] Shi W.-X., J. Di{\currency}. Geom. 29 pp 353– (1989)
[19] Simon M., Comm. Anal. Geom. 10 pp 1033– (2002) · Zbl 1034.58008
[20] DOI: 10.1007/BF02568293 · Zbl 0880.53034
[21] Yang D., Ann. Sci. E’c. Norm. Sup. 25 (4) pp 77– (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.