On Azéma-Yor processes, their optimal properties and the Bachelier-drawdown equation. (English) Zbl 1239.60031

The Azéma-Yor process associated with a primitive \(U\) of a locally bounded Borel function \(u\) on \([a,+\infty)\) and a semimartingale \(X\) with continuous running maximum \(\overline{X}\) is defined as \[ M^U_t(X):=U(\overline{X}_t)-u(\overline{X}_t)(\overline{X}_t)-X_t). \] The set of Azéma-Yor processes associated with the same max-continuous semimartingale \(X\) has a group structure that is indexed by functions and this property happens to be very useful. The authors first consider the Bachelier equation \[ dY_t=\phi(\overline{Y}_t)dX_t \] associated with \(X\) and a positive locally bounded function \(\phi\). They prove that \(Y\) is the Azéma-Yor process associated with \(U\) and some function \(U\) related to \(\phi\). They also prove that the Bachelier equation is equivalent to the so-called drawdown equation. Solutions of the latter have the drawdown property: they always stay above a given function of their past maximum.
They investigate in detail Azéma-Yor martingales defined from a nonnegative local martingale converging to zero at infinity. They establish relations between average value at risk, drawdown function, Hardy-Littelwood transform and its inverse. The construction of Azéma-Yor martingales with given terminal law allows them to retrieve the Azéma-Yor solution to the Skorokhod embedding problem. Finally, they characterize Azéma-Yor martingales showing that they are optimal relative to the concave ordering of terminal variables among martingales whose maximum stochastically dominates a given benchmark.


60G44 Martingales with continuous parameter
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI arXiv


[1] Azéma, J. (1978). Représentation multiplicative d’une surmartingale bornée. Z. Wahrsch. Verw. Gebiete 45 191-211. · Zbl 0389.60033
[2] Azéma, J. and Yor, M. (1978). En guise d’introduction. In Temps locaux (J. Azéma and M. Yor, eds.). Astérisque 52 - 53 3-16. Société Mathématique de France, Paris.
[3] Azéma, J. and Yor, M. (1979). Une solution simple au problème de Skorokhod. In Séminaire de Probabilités , XIII. Lecture Notes in Math. 721 90-115. Springer, Berlin. · Zbl 0414.60055
[4] Azéma, J. and Yor, M. (1979). Le problème de Skorokhod: Compléments à “Une solution simple au problème de Skorokhod.” In Séminaire de Probabilités , XIII. Lecture Notes in Math. 721 625-633. Springer, Berlin.
[5] Bachelier, L. (1906). Théorie des probabilités continues. J. Math. Pures Appl. 6 (II) 259-327. · JFM 37.0266.02
[6] Bank, P. and El Karoui, N. (2004). A stochastic representation theorem with applications to optimization and obstacle problems. Ann. Probab. 32 1030-1067. · Zbl 1058.60022
[7] Blackwell, D. and Dubins, L. E. (1963). A converse to the dominated convergence theorem. Illinois J. Math. 7 508-514. · Zbl 0146.37503
[8] Brown, H., Hobson, D. and Rogers, L. C. G. (2001). Robust hedging of barrier options. Math. Finance 11 285-314. · Zbl 1047.91024
[9] Cvitanić, J. and Karatzas, I. (1995). On portfolio optimization under “drawdown” constraints. IMA Lecture Notes in Mathematics & Applications 65 77-88. · Zbl 0841.90013
[10] Dellacherie, C. and Meyer, P.-A. (1980). Probabilités et potentiel. Chapitres V à VIII : Théorie des martingales , revised ed. Hermann, Paris. · Zbl 0464.60001
[11] El Karoui, N. and Meziou, A. (2006). Constrained optimization with respect to stochastic dominance: Application to portfolio insurance. Math. Finance 16 103-117. · Zbl 1128.91022
[12] El Karoui, N. and Meziou, A. (2008). Max-Plus decomposition of supermartingales and convex order. Application to American options and portfolio insurance. Ann. Probab. 36 647-697. · Zbl 1152.60038
[13] Elie, R. and Touzi, N. (2008). Optimal lifetime consumption and investment under drawdown constraint. Finance Stoch. 12 299-330. · Zbl 1164.91011
[14] Föllmer, H. and Schied, A. (2004). Stochastic Finance. An Introduction in Discrete Time , 2nd extended ed. de Gruyter Studies in Mathematics 27 . de Gruyter, Berlin. · Zbl 1126.91028
[15] Galtchouk, L. I. and Mirochnitchenko, T. P. (1997). Optimal stopping problem for continuous local martingales and some sharp inequalities. Stochastics Stochastics Rep. 61 21-33. · Zbl 0884.60036
[16] Gilat, D. and Meilijson, I. (1988). A simple proof of a theorem of Blackwell & Dubins on the maximum of a uniformly integrable martingale. In Séminaire de Probabilités , XXII. Lecture Notes in Math. 1321 214-216. Springer, Berlin. · Zbl 0655.60037
[17] Grossman, S. and Zhou, Z. (1993). Optimal investment strategies for controlling drawdowns. Math. Finance 3 241-276. · Zbl 0884.90031
[18] Hardy, G. H. and Littlewood, J. E. (1930). A maximal theorem with function-theoretic applications. Acta Math. 54 81-116. · JFM 56.0264.02
[19] Hobson, D. G. (1998). The maximum maximum of a martingale. In Séminaire de Probabilités , XXXII. Lecture Notes in Math. 1686 250-263. Springer, Berlin. · Zbl 0935.60028
[20] Hurlimann, W. (1998). On stop-loss order and the distortion pricing principle. Astin Bull. 28 119-134. · Zbl 1168.91414
[21] Kertz, R. P. and Rösler, U. (1990). Martingales with given maxima and terminal distributions. Israel J. Math. 69 173-192. · Zbl 0743.60046
[22] Kertz, R. P. and Rösler, U. (1992). Stochastic and convex orders and lattices of probability measures, with a martingale interpretation. Israel J. Math. 77 129-164. · Zbl 0771.60013
[23] Kertz, R. P. and Rösler, U. (1993). Hyperbolic-concave functions and Hardy-Littlewood maximal functions. In Stochastic Inequalities ( Seattle , WA , 1991). IMS Lecture Notes Monogr. Ser. 22 196-210. IMS, Hayward, CA. · Zbl 1400.60060
[24] Madan, D., Roynette, B. and Yor, M. (2008). Option prices as probabilities. Finance Research Letters 5 79-87.
[25] Nikeghbali, A. and Yor, M. (2006). Doob’s maximal identity, multiplicative decompositions and enlargements of filtrations. Illinois J. Math. 50 791-814 (electronic). · Zbl 1101.60059
[26] Obłój, J. (2004). The Skorokhod embedding problem and its offspring. Probab. Surv. 1 321-392. · Zbl 1189.60088
[27] Obłój, J. (2006). A complete characterization of local martingales which are functions of Brownian motion and its supremum. Bernoulli 12 955-969. · Zbl 1130.60050
[28] Obłój, J. and Yor, M. (2006). On local martingale and its supremum: Harmonic functions and beyond. In From Stochastic Calculus to Mathematical Finance (Y. Kabanov, R. Lipster and J. Stoyanov, eds.) 517-534. Springer, Berlin. · Zbl 1120.60045
[29] Profeta, C., Roynette, B. and Yor, M. (2010). Option Prices as Probabilities . Springer, Berlin. · Zbl 1188.91004
[30] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Springer, Berlin. · Zbl 0917.60006
[31] Roynette, B., Vallois, P. and Yor, M. (2006). Limiting laws associated with Brownian motion perturbated by its maximum, minimum and local time II. Studia Sci. Math. Hungar. 43 295-360. · Zbl 1121.60004
[32] Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications . Academic Press, Boston, MA. · Zbl 0806.62009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.