zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive consensus in directed networks of identical nonlinear oscillators with switching topologies. (English) Zbl 1239.93004
Summary: In this paper, we investigate the problem of impulsive consensus of multi-agent systems, where each agent can be modeled as an identical nonlinear oscillator. Firstly, an impulsive control protocol is designed for directed networks with switching topologies based on the local information of agents. Then sufficient conditions are given to guarantee the consensus of the networked nonlinear oscillators. How to select the discrete instants and impulsive constants is also discussed. Numerical simulations show the effectiveness of our theoretical results.

93A14Decentralized systems
93C30Control systems governed by other functional relations
93C10Nonlinear control systems
Full Text: DOI
[1] Vicsek, T.; Czirok, A.; Jacob, E. B.; Cohen, I.; Schochet, O.: Novel type of phase transition in a system of self-driven particles, Phys rev lett 75, 1226-1229 (1995)
[2] Jabdabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE trans automat control 48, 988-1001 (2003)
[3] Olfati-Saber, R.; Murray, R.: Consensus problems in networks of agents with switching topology and time-delays, IEEE trans automat control 49, 1520-1533 (2004)
[4] Olfati-Saber, R.; Fax, J.; Murray, R.: Consensus and cooperation in networked multi-agent systems, Proc IEEE 95, 1-17 (2007)
[5] Tian, Y. P.; Liu, C. L.: Consensus of multi-agent systems with diverse input and communication delays, IEEE trans automat control 53, 2122-2128 (2008)
[6] Wang, J. H.; Cheng, D. Z.; Hu, X. M.: Consensus of multi-agent linear dynamic systems, Asian J control 10, 144-155 (2008)
[7] Ma, C. Q.; Zhang, J. F.: Necessary and sufficient conditions for consensusability of linear multi-agent systems, IEEE trans automat control 55, 1263-1268 (2010)
[8] Scardovi, L.; Sepulchre, R.: Synchronization in networks of identical linear systems, Automatica 45, 2557-2562 (2009) · Zbl 1183.93054 · doi:10.1016/j.automatica.2009.07.006
[9] Huang, T.; Li, C.; Yu, W.; Chen, G.: Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback, Nonlinearity 22, 569-584 (2009) · Zbl 1167.34386 · doi:10.1088/0951-7715/22/3/004
[10] Huang, T.; Li, C.: Chaotic synchronization by the intermittent feedback method, J comput appl math 234, 1097-1104 (2010) · Zbl 1195.65212 · doi:10.1016/j.cam.2009.05.020
[11] Porfiri, M.; Fiorilli, F.: Global pulse synchronization of chaotic oscillators through fast-switching: theory and experiments, Chaos soliton fract 41, 245-262 (2009) · Zbl 1198.93183 · doi:10.1016/j.chaos.2007.11.033
[12] Porfiri, M.; Pigliacampo, R.: Master-slave global stochastic synchronization of chaotic oscillators, SIAM J appl dyn syst 7, 825-842 (2008) · Zbl 1167.34329 · doi:10.1137/070688973
[13] Ren, W.; Beard, R. W.: Consensus seeking in multi-agent systems using dynamically changing interaction topologies, IEEE trans automat control 50, 655-661 (2005)
[14] Hong, Y. G.; Gao, L. X.; Cheng, D. Z.; Hu, J. P.: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection, IEEE trans automat control 52, 943-948 (2007)
[15] Porfiri, M.; Stilwell, D. J.: Consensus seeking over random weighted directed graphs, IEEE trans automat control 52, 1767-1773 (2007)
[16] Porfiri, M.; Stilwell, D. J.; Bollt, E. M.: Synchronization in random weighted directed networks, IEEE trans circuits syst I 55, 3170-3177 (2008)
[17] Lin, P.; Jia, Y.: Average consensus in networks of multi-agents with both switching topology and coupling time-delay, Physica A 387, 303-313 (2008)
[18] Sun, Y. G.; Wang, L.; Xie, G.: Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays, Systems control lett 57, 175-183 (2008) · Zbl 1133.68412 · doi:10.1016/j.sysconle.2007.08.009
[19] Zhang, Y.; Tian, Y. P.: Consentability and protocol design of multi-agent systems with stochastic switching topology, Automatica 45, 1195-1201 (2009) · Zbl 1162.94431 · doi:10.1016/j.automatica.2008.11.005
[20] Belykh, I. V.; Belykh, V. N.; Hasler, M.: Blinking model and synchronization in small-world networks with a time-varying coupling, Phys D 195, 188-206 (2004) · Zbl 1098.82621 · doi:10.1016/j.physd.2004.03.013
[21] Zhao, J.; Hill, D. J.; Liu, T.: Synchronization of complex dynamical networks with switching topology: a switched system point of view, Automatica 45, 2502-2511 (2009) · Zbl 1183.93032 · doi:10.1016/j.automatica.2009.07.013
[22] Porfiri, M.; Fiorilli, F.: Node-to-node pinning-control of complex networks, Chaos 19, 013122 (2009) · Zbl 1311.93011
[23] Stilwell, D. J.; Bollt, E. M.; Roberson, D. G.: Sufficient conditions for fast switching synchronization in time varying network topologies, SIAM J appl dyn syst 5, 140-156 (2006) · Zbl 1145.37345 · doi:10.1137/050625229
[24] Jiang, H. B.; Yu, J. J.; Zhou, C. G.: Robust fuzzy control of nonlinear fuzzy impulsive systems with time-varying delay, IET control theory appl 2, 654-661 (2008)
[25] Han, X. P.; Lu, J. A.; Wu, X. Q.: Synchronization of impulsively coupled systems, Int J bifur chaos 18, 1539-1549 (2008) · Zbl 1147.34336 · doi:10.1142/S0218127408021154
[26] Jiang HB, Bi QS. Contraction theory based synchronization analysis of impulsively coupled oscillators. Nonlinear Dyn 2011, doi:10.1007/s11071-011-0026-2.
[27] Yang, T.: Impulsive control theory, (2001) · Zbl 0996.93003
[28] Li, C.; Liao, X.; Yang, X.; Huang, T.: Impulsive stabilization and synchronization of a class of chaotic delay systems, Chaos 15, 043103 (2005) · Zbl 1144.37371 · doi:10.1063/1.2102107
[29] Chen, Y. S.; Chang, C. C.: Impulsive synchronization of Lipschitz chaotic systems, Chaos soliton fract 40, 1221-1228 (2009) · Zbl 1197.37025 · doi:10.1016/j.chaos.2007.08.084
[30] Zhang, Y. P.; Sun, J. T.: Impulsive robust fault-tolerant feedback control for chaotic Lur’e systems, Chaos soliton fract 39, 1440-1446 (2009) · Zbl 1197.93149 · doi:10.1016/j.chaos.2007.06.012
[31] Zheng, Y. A.; Chen, G.: Fuzzy impulsive control of chaotic systems based on TS fuzzy model, Chaos soliton fract 39, 2002-2011 (2009) · Zbl 1197.93109 · doi:10.1016/j.chaos.2007.06.061
[32] Liu, B.; Liu, B. X.; Chen, G.: Robust impulsive synchronization of uncertain dynamical networks, IEEE trans circuits syst I 52, 1431-1441 (2005)
[33] Cai, S.; Zhou, J.; Xiang, L.; Liu, Z.: Robust impulsive synchronization of complex delayed dynamical networks, Phys lett A 372, 4990-4995 (2008) · Zbl 1221.34075 · doi:10.1016/j.physleta.2008.05.077
[34] Guan, Z. H.; Zhang, H.: Stabilization of complex network with hybrid impulsive and switching control, Chaos soliton fract 37, 1372-1382 (2008) · Zbl 1142.93423 · doi:10.1016/j.chaos.2006.10.064
[35] Jiang, H. B.: Hybrid adaptive and impulsive synchronization of uncertain complex dynamical networks by the generalized Barbǎlat’s lemma, IET control theory appl 3, 1330-1340 (2009)
[36] Jiang, H. B.; Yu, J. J.; Zhou, C. G.: Consensus of multi-agent linear dynamic systems via impulsive control protocols, Int J systems sci 42, 967-976 (2011) · Zbl 1233.93005 · doi:10.1080/00207720903267866
[37] Jiang, H. B.; Bi, Q. S.: Impulsive synchronization of networked nonlinear dynamical systems, Phys lett A 374, 2723-2729 (2010) · Zbl 1237.34101
[38] Guan, Z. H.; Liu, Z. W.; Feng, G.; Wang, Y. W.: Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE trans circuits syst I 57, 2182-2195 (2010)
[39] Horn, R. A.; Johnson, C. A.: Topics in matrix analysis, (1991) · Zbl 0729.15001
[40] Horn, R. A.; Johnson, C. A.: Matrix analysis, (1985) · Zbl 0576.15001
[41] Godsil, C.; Royle, G.: Algebraic graph theory, (2001) · Zbl 0968.05002
[42] Xiao, L.; Boyd, S.; Kim, S. J.: Distributed average consensus with least-mean-square deviation, J parallel distrib comput 67, 33-46 (2007) · Zbl 1109.68019 · doi:10.1016/j.jpdc.2006.08.010
[43] Nedic, A.; Olshevsky, A.; Ozdaglar, A.; Tsitsiklis, J. N.: On distributed averaging algorithms and quantization effects, IEEE trans automat control 54, 2506-2517 (2009)