zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust finite-time $H_{\infty }$ control for a class of uncertain switched neutral systems. (English) Zbl 1239.93036
Summary: This paper investigates the robust finite-time $H_{\infty }$ control problem for a class of uncertain switched neutral systems with unknown time-varying disturbance. The uncertainties under consideration are norm bounded. By using the average dwell time approach, a sufficient condition for finite-time boundedness of switched neutral systems is derived. Then, finite-time $H_{\infty }$ performance analysis for switched neutral systems is developed, and a robust finite-time $H_{\infty }$ state feedback controller is proposed to guarantee that the closed-loop system is finite-time bounded with $H_{\infty }$ disturbance attenuation level $\gamma $. All the results are given in terms of Linear Matrix Inequalities (LMIs). Finally, two numerical examples are provided to show the effectiveness of the proposed method.

93C30Control systems governed by other functional relations
34K40Neutral functional-differential equations
93C15Control systems governed by ODE
Full Text: DOI
[1] Liberzon, D.; Hespanha, J. P.; Morse, A. S.: Stability of switched systems: a Lie-algebraic condition, Syst control lett 37, No. 3, 117-122 (1999) · Zbl 0948.93048 · doi:10.1016/S0167-6911(99)00012-2
[2] Lin, H.; Antsaklis, P. J.: Stability and stabilizability of switched linear systems: a survey of recent results, IEEE trans automat control 54, No. 2, 308-322 (2009)
[3] Ucar, A.: A prototype model for chaos studies, Int J eng sci 40, 251-258 (2002) · Zbl 1211.37041 · doi:10.1016/S0020-7225(01)00060-X
[4] Ucar, A.: On the chaotic behaviour of a prototype delayed dynamical system, Chaos solitons fract 16, 187-194 (2003) · Zbl 1033.37020 · doi:10.1016/S0960-0779(02)00160-1
[5] Lien, C. H.; Yu, K. W.: Non-fragile H$\infty $ control for uncertain neutral systems with time-varying delays via the LMI optimization approach, IEEE trans syst man cybernet part B 37, No. 2, 493-499 (2007)
[6] Sen, M. D.; Malaina, J. L.; Gallego, A.; Soto, J. C.: Stability of non-neutral and neutral dynamic switched systems subject to internal delays, Am J appl sci 2, No. 10, 1481-1490 (2005)
[7] Sun, X. M.; Fu, J.; Sun, H. F.; Zhao, J.: Stability of linear switched neutral delay systems, Proc chinese soc electr. Eng. 25, No. 23, 42-46 (2005)
[8] Zhang, Y.; Liu, X.; Zhu, H.; Zhong, S.: Stability analysis and control synthesis for a class of switched neutral systems, Appl math comput 190, 1258-1266 (2007) · Zbl 1117.93062 · doi:10.1016/j.amc.2007.02.011
[9] Liu, D.; Liu, X.; Zhong, S.: Delay-dependent robust stability and control synthesis for uncertain switched neutral systems with mixed delays, Appl math comput 202, 828-839 (2008) · Zbl 1143.93020 · doi:10.1016/j.amc.2008.03.028
[10] Liu, D.; Zhong, S.; Liu, X.; Huang, Y.: Stability analysis for uncertain switched neutral systems with discrete time-varying delay: a delay-dependent method, Math comput simulat 80, 828-839 (2009) · Zbl 1185.34105 · doi:10.1016/j.matcom.2009.08.002
[11] Xiong, L.; Zhong, S.; Ye, M.; Wu, S.: New stability and stabilization for switched neutral control systems, Chaos solitons fract 42, No. 3, 1800-1811 (2009) · Zbl 1198.93187 · doi:10.1016/j.chaos.2009.03.093
[12] Zhang Y, Zhu H, Zhong S. Robust non-fragile H\infty  control for a class of switched neutral systems. In: 2nd IEEE conference on industrial electronics and applications; 2007. p. 1003 -- 8.
[13] Zhang, Y.; Zhu, H.; Liu, X.; Zhong, S.: Reliable H$\infty $ control for a class of switched neutral systems, Complex syst appl: model. Control simulat. 14, No. S2, 1724-1729 (2007)
[14] Zhang, Y.; Liu, X.; Zhu, H.: Robust sliding mode control for a class of uncertain switched neutral systems, Dynam. contin. Discrete impulsive 2, No. 15, 207-218 (2008) · Zbl 1149.93017
[15] Dorato, P.: Short time stability in linear time-varying systems, Proc IRE int convention record 4, 83-87 (1961)
[16] Amato F, Ariola M, Abdallah CT, Cosentino C. Application of finite-time stability concepts to the control of ATM networks. In: Proceedings of the annual Allerton conference on communication, control and computers; 2002. p. 1071 -- 9.
[17] Mastellone S, Abdallah CT, Dorato P. Stability and finite-time stability analysis of discrete-time nonlinear networked control systems. In: Proceedings of the American control conference; 2005. p. 1239 -- 44.
[18] Amato, F.; Ariola, M.: Finite-time control of discrete-time linear systems, IEEE trans automat control 50, No. 5, 724-729 (2005)
[19] Bhat, S. P.; Bernstein, D. S.: Finite-time stability of continuous autonomous systems, SIAM J control optimiz 38, No. 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[20] Hong, Y.; Huang, J.; Xu, Y.: On an output feedback finite time stabilization problem, IEEE trans automat control 46, No. 2, 305-309 (2001) · Zbl 0992.93075 · doi:10.1109/9.905699
[21] Hong, Y.: Finite-time stabilization and stability of a class of controllable systems, Syst control lett 48, No. 4, 231-236 (2002) · Zbl 0994.93049 · doi:10.1016/S0167-6911(02)00119-6
[22] Huang, X.; Lin, W.; Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica 41, No. 5, 881-888 (2005) · Zbl 1098.93032 · doi:10.1016/j.automatica.2004.11.036
[23] Qian, C.; Li, J.: Global finite-time stabilization by output feedback for planar systems without observable linearization, IEEE trans automat control 50, No. 6, 549-564 (2005)
[24] Lin, X.; Du, H.; Li, S.: Finite-time boundedness and L2-gain analysis for switched delay systems with norm-bounded disturbance, Appl math comput 217, No. 12, 5982-5993 (2011) · Zbl 1218.34082 · doi:10.1016/j.amc.2010.12.032
[25] Xiang, W.; Xiao, J.: H$\infty $ finite-time control for switched nonlinear discrete-time systems with norm-bounded disturbance, J franklin inst 348, No. 2, 331-352 (2011) · Zbl 1214.93043 · doi:10.1016/j.jfranklin.2010.12.001
[26] Liberzon, Daniel: Switching in systems and control, (2003) · Zbl 1036.93001
[27] Xie, L.: Output feedback H$\infty $ control of systems with parameter uncertainty, Int J control 63, No. 4, 741-750 (1996) · Zbl 0841.93014 · doi:10.1080/00207179608921866