Salim, Mohamed A. M. Kimmerle’s conjecture for integral group rings of some alternating groups. (English) Zbl 1240.16047 Acta Math. Acad. Paedagog. Nyházi. (N.S.) 27, No. 1, 9-22 (2011). Summary: Using the Luthar-Passi method and results of Hertweck, we study the long-standing conjecture of Zassenhaus for integral group rings of alternating groups \(A_n\), \(n\leq 8\). As a consequence of our results, we confirm Kimmerle’s conjecture about prime graphs for those groups. Cited in 6 Documents MSC: 16U60 Units, groups of units (associative rings and algebras) 20C05 Group rings of finite groups and their modules (group-theoretic aspects) 16S34 Group rings Keywords:Zassenhaus conjecture; Kimmerle conjecture; torsion units; integral group rings; alternating group \(A_7\); alternating group \(A_8\); groups of units PDF BibTeX XML Cite \textit{M. A. M. Salim}, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 27, No. 1, 9--22 (2011; Zbl 1240.16047) Full Text: EMIS OpenURL