zbMATH — the first resource for mathematics

Turán’s extremal problem on locally compact abelian groups. (English) Zbl 1240.22005
Summary: Let \(G\) be a locally compact abelian group (LCA group) and \(\Omega\) be an open, 0-symmetric set. Let \(\mathcal F := \mathcal F(\Omega)\) be the set of all continuous functions \(f : G \to \mathbb R\) which are supported in \(\Omega\) and are positive definite. The Turán constant of \(\Omega\) is defined as \[ \mathcal T (\Omega) := \sup \big\{\int_\Omega f : f \in \mathcal F(\Omega), f(0) = 1\big\}. \] M. Kolountzakis and the author have shown that structural properties – like spectrality, tiling or packing with a certain set \(\Lambda\) – of subsets \(\omega\) in finite, compact or Euclidean (i.e., \(\mathbb R^d\)) groups and in \(\mathbb Z^d\) yield estimates of \(\mathcal T (\Omega)\). However, in these estimates some notion of the size, i.e., density of \(\Lambda\) played a natural role, and thus in groups where we had no grasp of the notion, we could not accomplish such estimates.
In the present work, a recent generalized notion of asymptotic uniform upper density is invoked, allowing a more general investigation of the Turán constant in relation to the above structural properties. Our main result extends earlier results stating that convex tiles of a Euclidean space necessarily have \[ \mathcal T_{\mathbb R^d}(\Omega) = | \Omega| /2^d. \] In our extension, \(\mathbb R^d\) could be replaced by any LCA group, convexity is considerably relaxed to \(\Omega\) being a difference set, and the condition of tiling is also relaxed to a certain packing type condition and positive asymptotic uniform upper density of the set \(\Lambda\).
Also, our goal is to give a more complete account of all the related developments and the history, because until now an exhaustive overview of the full background of the so-called Turán problem has not been delivered.

22B10 Structure of group algebras of LCA groups
43A35 Positive definite functions on groups, semigroups, etc.
05B40 Combinatorial aspects of packing and covering
11K70 Harmonic analysis and almost periodicity in probabilistic number theory
Full Text: DOI
[1] N. Andreev, Extremal problems for periodic functions with small support, Vhestnik Moskovskogo Univ., Ser. 1, Mat.-Mech., 30(1997), No. 1, 29–32. (in Russian). · Zbl 0913.42009
[2] N. Andreev, S. V. Konyagin, and A. Yu. Popov, Maximum problems for functions with small support, Math. Notes, 60(1996), No. 3, 241–247. · Zbl 0911.42001 · doi:10.1007/BF02320360
[3] V. V. Arestov and A. G. Babenko, On the Delsarte scheme for estimating contact numbers, Tr. Mat. Inst. Steklova, 219(1997), Teor. Priblizh. Garmon. Anal., 44–73; translation in Proc. Steklov Inst. Math., 219(1997), no. 4, 36–65. · Zbl 0927.52026
[4] V. V. Arestov and A. G. Babenko, Some properties of solutions of a Delsarte-type problem and its dual, in: Proceedings of the International Conference ”Approximation Theory and Harmonic Analysis”, Tula, 1998, Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform., 4(1998), No. 1, 36–39, 162–163.
[5] V. V. Arestov and E. E. Berdysheva, Turán’s problem for positive definite functions with supports in a hexagon, Proc. Steklov Inst. Math., Suppl. 2001, Approximation Theory, Asymptotical Expansions, Suppl. 1, 20–29. · Zbl 1123.26300
[6] V. V. Arestov and E. E. Berdysheva, The Turán problem for a class of polytopes, East J. Approx. 8(2002), No. 3, 381–388. · Zbl 1331.42005
[7] V. Arestov, E. Berdysheva, and H. Berens, On pointwise Turán’s problem for positive definite functions, East J. Approx., 9(2003), No. 1, 31–42. · Zbl 1110.42301
[8] A. S. Belov and S. V. Konyagin, An estimate for the free term of a nonnegative trigonometric polynomial with integer coefficients, Math. Notes, 59(1996), No. 3–4, 451–453. · Zbl 0871.42001 · doi:10.1007/BF02308695
[9] A. S. Belov and S. V. Konyagin, An estimate of the free term of a nonnegative trigonometric polynomial with integer coefficients, Izvestiya R.A.N., Ser. Mat., 60(2000), No. 6, 31–90. · Zbl 0885.42001 · doi:10.4213/im95
[10] E. Berdysheva and H. Berens, Über ein Turánshces Problem für 1-radiale, positiv definite Funktionen, Results Math., 47(2005), 17–32. · Zbl 1096.42002 · doi:10.1007/BF03323009
[11] P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith., 18(1971), 355–369. · Zbl 0221.12003
[12] R. P. Boas Jr. and M. Kac, Inequalities for Fourier transforms of positive functions, Duke Math. J., 12(1945), 189–206. · Zbl 0060.25602 · doi:10.1215/S0012-7094-45-01215-4
[13] C. Carathéodory, Über den Variabilitätsbereich der Fourier’schen Konstanten von positiven harmonischen Funktionen,Rend. Circ. Mat. Palermo, 32(1911), 193–217. · JFM 42.0429.01 · doi:10.1007/BF03014795
[14] H. Cohn and N. Elkies, New upper bounds for sphere packings, I, Ann. Math., 157(2003), 689–714. · Zbl 1041.52011 · doi:10.4007/annals.2003.157.689
[15] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Third edition, with additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 290, Springer (New York, 1999).
[16] Ph. Delsarte, Bounds for unrestricted codes by linear programming, Philips Res. Rep., 2(1972), 272–289. · Zbl 0348.94016
[17] Y. Domar, An extremal problem for positive definite functions, J. Math. Anal. Appl., 52(1975), 56–63. · Zbl 0316.43007 · doi:10.1016/0022-247X(75)90055-4
[18] W. Ehm, T. Gneiting, and D. Richards, Convolution roots of radial positive definite functions with compact support, Trans. Amer. Math. Soc., 356(2004), No. 11, 4655–4685. · Zbl 1044.42007 · doi:10.1090/S0002-9947-04-03502-0
[19] B. Farkas, M. Matolcsi, and P. Móra, On Fuglede’s conjecture and the existence of universal spectra, J. Fourier Anal. Appl., 12(2006), No. 5, 483–494. · Zbl 1106.42031 · doi:10.1007/s00041-005-5069-7
[20] B. Farkas and Sz. Gy. Révész, Tiles with no spectra in dimension 4, Math. Scand., 98(2006), 44–52. · Zbl 1139.52019
[21] L. Fejér, Über trigonometrische Polynome, J. angew. Math. 146(1915), 53–82. · JFM 45.0406.02
[22] L. Fejér, Gesammelte Arbeiten. I–II, Akadémiai Kiadó (Budapest, 1970).
[23] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., 16(1974), 101–122. · Zbl 0279.47014 · doi:10.1016/0022-1236(74)90072-X
[24] A. Garsia, E. Rodemich, and H. Rumsey, On some extremal positive definite functions, J. Math. Mech., 18(1969), No. 9, 805–834. · Zbl 0191.06002
[25] D. V. Gorbachev, An extremal problem for periodic functions with supports in the ball, Math. Notes, 69(2001), No. 3, 313–319. · Zbl 0994.42005 · doi:10.1023/A:1010275206760
[26] D. V. Gorbachev, Extremal problem for entire functions of exponential spherical type, connected with the Levenshtein bound on the sphere packing density in \(\mathbb{R}\)n, Izvestiya of the Tula State University, Ser. Mathematics, Mechanics, Informatics 6(2000), 71–78 (in Russian).
[27] D. V. Gorbachev, V. I. Ivanov, and Yu. D. Rudomazina, Extremal problems for periodic functions with conditions on its values and Fourier coefficients, Izvestiya of the Tula State University, Ser. Mathematics, Mechanics, Informatics, 10(2004), No. 1, 76–104 (in Russian).
[28] D. V. Gorbachev, V. I. Ivanov, and Yu. D. Rudomazina, Some extremal problems for periodic functions with conditions on their values and Fourier coefficients, English summary, Proc. Steklov Inst. Math., 2005, Function Theory, Suppl. 2, 139–159. · Zbl 1137.42001
[29] D. V. Gorbachev and A. S. Manoshina, The extremal Turán problem for periodic functions with small support, Proceedings of the IV International Conference ”Modern Problems of Number Theory and its Applications” (Tula, 2001). Chebyshevskiĭ Sb., 2(2001), 31–40 (in Russian); see also as arXiv:math.CA/0211291 v1 19 Nov 2002.
[30] D. V. Gorbachev and A. S. Manoshina, Relation between Turán extremum problem and van der Corput sets, see on arXiv:math.CA/0312420 v1 16 Dec 2003.
[31] D. V. Gorbachev and A. S. Manoshina, Turán extremal problem for periodic functions with small support and its applications, Math. Notes, 76(2004) No. 5, 688–200. · Zbl 1074.42002 · doi:10.1023/B:MATN.0000049663.45427.0f
[32] D. V. Gorbachev, E. V. Morozova, and N. S. Pariiskaya, An extremal problem for nonnegative trigonometric polynomials and its applications, Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform., 8(2002), No. 1, 41–52 (in Russian).
[33] G. Halász, Lectures on Fourier analysis at the L. Eötvös University of Budapest (from the 1970’s on).
[34] A. Iosevich, N. Katz, and T. Tao, Convex bodies with a point of curvature do not admit exponential bases, Amer. J. Math., 123(2001), 115–120. · Zbl 0998.42001 · doi:10.1353/ajm.2001.0003
[35] A. Iosevich, N. Katz, and T. Tao, The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett., 10(2003), No. 5–6, 559–569. · Zbl 1087.42018 · doi:10.4310/MRL.2003.v10.n5.a1
[36] V. I. Ivanov, On the Turán and Delsarte problems for periodic positive-definite functions, Mat. Zametki, 80(2006), No. 6, 934–939; translation in Math. Notes, 80(2006), No. 5–6, 875–880. · doi:10.4213/mzm3369
[37] V. I. Ivanov and Yu. D. Rudomazina, On the Turán problem for periodic functions with nonnegative Fourier coefficients and small support. (Russian) Mat. Zametki, 77 (2005), No. 6, 941–945; translation in Math. Notes 77 (2005), No. 5–6, 870–875. · Zbl 1100.42003 · doi:10.4213/mzm2552
[38] G. A. Kabatyanskii and V. I. Levenshtein, On bounds for packing on the sphere and in space, Probl. Inform., 14(1978), No. 1, 3–25 (in Russian).
[39] T. Kamae and M. Mèndes-France, Van der Corput’s difference theorem, Israel J. Math., 31(1978), 335–342. · Zbl 0396.10040 · doi:10.1007/BF02761498
[40] Y. Katznelson, An introduction to harmonic analysis. Second corrected edition, Dover Publications, Inc. (New York, 1976). · Zbl 0352.43001
[41] M. N. Kolountzakis, Non-symmetric convex domains have no basis for exponentials, Illinois J. Math., 44(2000), No. 3, 542–550. · Zbl 0972.52011
[42] M. N. Kolountzakis and J. C. Lagarias, Structure of tilings of the line by a function, Duke Math. J., 82(1996), No. 3, 653–678. · Zbl 0854.58016 · doi:10.1215/S0012-7094-96-08227-7
[43] M. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math., 18(2006), 519–528. · Zbl 1130.42039 · doi:10.1515/FORUM.2006.026
[44] M. Kolountzakis and M. Matolcsi, Complex Hadamard matrices and the spectral set conjecture, Collectanea Mathematica, (2006), Vol. Extra, 281–291. · Zbl 1134.42313
[45] M. N. Kolountzakis and Sz. Gy. Révész, On a problem of Turán about positive definite functions, Proc. Amer. Math. Soc., 131(2003), 3423–3430. · Zbl 1042.42004 · doi:10.1090/S0002-9939-03-07023-0
[46] M. N. Kolountzakis and Sz. Gy. Révész, On pointwise estimates of positive definite functions with given support, Canad. J. Math., 58(2006), No. 2, 401–418. · Zbl 1129.42336 · doi:10.4153/CJM-2006-017-8
[47] M. N. Kolountzakis and Sz. Gy. Révész, Turán’s extremal problem for positive definite functions on groups, J. London Math. Soc., 74(2006), 475–496. · Zbl 1107.43004 · doi:10.1112/S0024610706023234
[48] S. V. Konyagin and I. Sharplinski, Character sums with exponential functions and their applications, Cambridge Univ. Press (1999).
[49] V. I. Levenshtein, On bounds for packings in n-dimensional Euclidean space, Dokl. Akad. Nauk SSSR, 245(1979), 1299–1303 (in Russian).
[50] A. S. Manoshina, Extremum problem of Turán for functions with small support, Izvestiya of the Tula State University, Ser. Mat. Mech. Inf., 6(2000) No 3, 113–116.
[51] M. Matolcsi, Fuglede’s conjecture fails in dimension 4, Proc. Amer. Math. Soc., 133(2005), No. 10, 3021–3026. · Zbl 1087.42019 · doi:10.1090/S0002-9939-05-07874-3
[52] P. McMullen, Convex bodies which tile space by translation, Mathematika, 27(1980), 113–121. · Zbl 0432.52016 · doi:10.1112/S0025579300010007
[53] H. L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, Amer. Math. Soc. (Providence, RI, 1994). · Zbl 0814.11001
[54] R. L. Page, On computing some extremal periodic positive definite functions, Math. Comput., 27(1973), 345–353. · Zbl 0282.65055 · doi:10.1090/S0025-5718-1973-0411168-7
[55] A. Yu. Popov, Oral communication (recorded in writing in [29, 31, 27]).
[56] Sz. Gy. Révész, On asymptotic uniform upper density in locally compact abelian groups, preprint; see on ArXive as arXiv:0904.1567, (2009).
[57] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, 12 Interscience Publishers (a division of John Wiley and Sons) (New York-London, 1962). · Zbl 0107.09603
[58] I. Z. Ruzsa, Connections between the uniform distribution of a sequence and its differences, in: Colloquia Mathematica Societatis János Bolyai, 34, North Holland (1981), 1419–1443.
[59] W. M. Schmidt and A. Schinzel, Comparison of L 1- and L norms of polynomials, Acta Arith., 104(2002), No. 3, 283–296. · Zbl 1017.11013 · doi:10.4064/aa104-3-4
[60] C. L. Siegel, Über Gitterpunkte in konvexen Körpern und damit zusammenhängendes Extremalproblem, Acta Math., 65(1935), 307–323. · Zbl 0012.39502 · doi:10.1007/BF02420949
[61] S. B. Stechkin, An extremal problem for trigonometric series with nonnegative coefficients, Acta Math. Acad. Sci. Hungar., 23(1972), No. 3–4, 289–291 (in Russian). · Zbl 0259.42015 · doi:10.1007/BF01896947
[62] T. Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett., 11(2004), No. 2–3, 251–258. · Zbl 1092.42014 · doi:10.4310/MRL.2004.v11.n2.a8
[63] B. A. Venkov, On a class of Euclidean polyhedra, Vestnik Leningrad Univ. Ser. Math. Fiz. Him., 9(1954), 11–31 (in Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.