Han, Xiaoling; An, Ruilian A generic result for an eigenvalue problem with indefinite weight function. (Chinese. English summary) Zbl 1240.34051 Acta Math. Sin., Chin. Ser. 53, No. 6, 1111-1118 (2010). Summary: This paper focuses on the structure of the solution set of indefinite-weight eigenvalue problems \[ -u''=\lambda(a(t)u+uf(t,u)),\;0<t<1,\;u(0)=u(1)=0, \] where \(\lambda \in \mathbb R\) is a parameter, \(a\in C[0,1]\) changes sign, \(f:[0,1]\times \mathbb R\to \mathbb R\) is a \(C^k\) function, \(k\geq 2\), and \(f(t, 0)=0,\;t \in [0,1]\). Cited in 1 Document MSC: 34B09 Boundary eigenvalue problems for ordinary differential equations 34B15 Nonlinear boundary value problems for ordinary differential equations Keywords:indefinite weight; genericity; structure of solution set PDF BibTeX XML Cite \textit{X. Han} and \textit{R. An}, Acta Math. Sin., Chin. Ser. 53, No. 6, 1111--1118 (2010; Zbl 1240.34051)