Alves, Claudianor O.; Figueiredo, Giovany M.; Furtado, Marcelo F. Multiple solutions for critical elliptic systems via penalization method. (English) Zbl 1240.35144 Differ. Integral Equ. 23, No. 7-8, 703-723 (2010). Summary: We consider the system \[ -\varepsilon ^2\Delta u+W(x)u=Q_{u}(u,v)+\frac {1}{2^{*}}K_{u}(u,v), \]\[ -\varepsilon ^2\Delta v+V(x)v=Q_{v}(u,v)+\frac {1}{2^{*}}K_{v}(u,v) \] in \(\mathbb {R}^{N}\) with positive initial data, where \(2^{*}=2N/(N - 2)\), \(N\geq 3\), \(\varepsilon >0\) is a parameter, \(W\) and \(V\) are positive potentials, and \(Q\) and \(K\) are homogeneous function with \(K\) having critical growth. We relate the number of solutions to the topology of the set, where \(W\) and \(V\) attain their minimum values. We apply Ljusternik-Schnirelmann theory in the proof. Cited in 4 Documents MSC: 35J47 Second-order elliptic systems 35J50 Variational methods for elliptic systems 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces Keywords:critical elliptic system; multiple solution; Ljusternik-Schnirelmann theory PDF BibTeX XML Cite \textit{C. O. Alves} et al., Differ. Integral Equ. 23, No. 7--8, 703--723 (2010; Zbl 1240.35144)