Mikeš, Josef; Chodorová, Marie On concircular and torse-forming vector fields on compact manifolds. (English) Zbl 1240.53028 Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26, No. 2, 329-335 (2010). Summary: In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphically projective mappings of special compact spaces without boundary. Cited in 3 Documents MSC: 53B20 Local Riemannian geometry 53B30 Local differential geometry of Lorentz metrics, indefinite metrics 53C20 Global Riemannian geometry, including pinching 53C24 Rigidity results Keywords:concircular vector field; torse-forming vector field; Riemannian manifold; manifold with affine connection; compact manifold PDF BibTeX XML Cite \textit{J. Mikeš} and \textit{M. Chodorová}, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26, No. 2, 329--335 (2010; Zbl 1240.53028)