Consensus of high-order dynamic multi-agent systems with switching topology and time-varying delays. (English) Zbl 1240.93251

Summary: This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent’s own information and its neighbors’ partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents are extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.


93C85 Automated systems (robots, etc.) in control theory
68T42 Agent technology and artificial intelligence
93A14 Decentralized systems
Full Text: DOI


[1] T. Vicsek, A. Czirok, E. Ben Jacob, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6): 1226–1229. · doi:10.1103/PhysRevLett.75.1226
[2] A. Jadbabaie, J. Lin, A. S. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6): 988–1001. · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781
[3] L. Moreau. Stability of multiagent systems with time-dependent communication links[J]. IEEE Transactions on Automatic Control, 2005, 50(2): 169–182. · Zbl 1365.93268 · doi:10.1109/TAC.2004.841888
[4] D. B. Kingston, R. W. Beard. Discrete-time average-consensus under switching network topologies[C]//Proceedings of the 2006 American Control Conference. New York: IEEE, 2006: 3551–3556.
[5] F. Xiao, L. Wang. Dynamic behavior of discrete-time multiagent systems with general communication structures[J]. Physica A, 2006, 370(2): 364–380. · doi:10.1016/j.physa.2006.03.063
[6] F. Xiao, L. Wang, A. Wang. Consensus problems in discrete-time multiagent systems with fixed topology[J]. Journal of Mathematical Analysis and Applications, 2006, 322(2): 587–598. · Zbl 1099.68090 · doi:10.1016/j.jmaa.2005.08.094
[7] A. Kashyap, T. Basşar, R. Srikant. Quantized consensus[J]. Automatica, 2007, 43(7): 1192–1203. · Zbl 1123.93090 · doi:10.1016/j.automatica.2007.01.002
[8] R. Olfti-Saber, R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transaction on Automatic Control, 2004, 49(9): 1520–1533. · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[9] W. Ren, R.W. Beard. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transaction on Automatic Control, 2005, 50(5): 655–661. · Zbl 1365.93302 · doi:10.1109/TAC.2005.846556
[10] F. Xiao, L. Wang, L. Shi, et al. Algebraic characterizations of consensus problems for networked dynamic systems[C]//Proceedings of the 2005 IEEE International Symposium on Intelligent Control. Piscataway: IEEE, 2005: 622–627.
[11] Z. Lin, B. Francis, M. Maggiore. State agreement for continoustime coupled nonlinear systems[J]. SIAM Journal on Control and Optimization, 2007, 46(1): 288–307. · Zbl 1141.93032 · doi:10.1137/050626405
[12] J. Cortès. Distributed algorithms for reaching consensus on general functions[J]. Automatica, 2008, 44(3): 726–737. · Zbl 1283.93016 · doi:10.1016/j.automatica.2007.07.022
[13] Y. Hong, J. Hu, L. Gao. Tracking control for multi-agent consensus with an active leader and variable topology[J]. Automatica, 2006, 42(7): 1177–1182. · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013
[14] W. Ren. Multi-vehicle consensus with a time-varying reference state[J]. Systems & Control Letters, 2007, 56(7/8): 474–483. · Zbl 1157.90459 · doi:10.1016/j.sysconle.2007.01.002
[15] Y. Sun, L. Wang, G. Xie. Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays[J]. Systems & Control Letters, 2008, 57(2): 175–183. · Zbl 1133.68412 · doi:10.1016/j.sysconle.2007.08.009
[16] M. Ji, M. Egerstedt. Distributed coordination control of multiagent systems while preserving connectedness[J]. IEEE Transaction on Robotics and Automation, 2007, 23(4): 693–703. · doi:10.1109/TRO.2007.900638
[17] G. Xie, L. Wang. Consensus control for a class of networks of dynamic agents[J]. International Journal of Robust and Nonlinear Control, 2007, 17(10/11): 941–959. · Zbl 1266.93013 · doi:10.1002/rnc.1144
[18] Y. Hong, L. Gao, D. Cheng, et al. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection[J]. IEEE Transaction on Automatic Control, 2007, 52(5): 943–948. · Zbl 1366.93437 · doi:10.1109/TAC.2007.895860
[19] J. Hu, Y. Hong. Leader-following coordination of multi-agent systems with coupling time delays[J]. Physica A, 2007, 374(2): 853–863. · doi:10.1016/j.physa.2006.08.015
[20] W. Ren, K. Moore, Y. Chen. High-order consensus algorithms in cooperative vehicle systems[C]//Proceeding of the 2006 IEEE International Conference on Networking, Sensing and Control Conference. Piscataway: IEEE, 2006: 457–462.
[21] H. Shi, L. Wang, T. Chu. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions[J]. Physica D, 2006, 213(1): 51–65. · Zbl 1131.93354 · doi:10.1016/j.physd.2005.10.012
[22] S. Mu, T. Chu, L. Wang. Coordinated collective motion in a motile particle group with a leader[J]. Physica A, 2005, 351(2/4): 211–226. · doi:10.1016/j.physa.2004.12.054
[23] H. G. Tanner, A. Jadbabaie, G. J. Pappas. Stable flocking of mobile agents-Part I: Fixed topology[C]//Proceedings of the 42nd IEEE Conference on Decision and Control. New York: IEEE, 2003: 2010–2015.
[24] H. G. Tanner, A. Jadbabaie, G. J. Pappas. Stable flocking of mobile agents-Part II: Dynamic topology[C]//Proceedings of the 42nd IEEE Conference on Decision and Control. New York: IEEE, 2003: 2016–2021.
[25] G. Lafferriere, A. Wolliams, J. Caughman, et al. Decentralized control of vehicle formations[J]. Systems & Control Letters, 2005, 54(9): 899–910. · Zbl 1129.93303 · doi:10.1016/j.sysconle.2005.02.004
[26] E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems[M]. New York: Springer-Verlag, 1990. · Zbl 0703.93001
[27] C-T. Lin. Structural controllability[J]. IEEE Transactions on Automatic Control, 1974, AC-19(3): 201–208. · Zbl 0282.93011
[28] C. Godsil, G. Royle. Algebraic Graph Theory[M]. New York: Springer-Verlag, 2001. · Zbl 0968.05002
[29] B. Boyd, L. E. Ghaoui, E. Feron, et al. Linear Matrix Inequalities in System and Control Theory[M]. Philadelphia: SIAM, 1994. · Zbl 0816.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.