zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the inverse eigenvalue problem for nonnegative matrices of order two to five. (English) Zbl 1241.15008
This paper provides, under some particular conditions, solutions for the inverse eigenvalue problem for nonnegative matrices up to order 5.
MSC:
15A18Eigenvalues, singular values, and eigenvectors
15A29Inverse problems in matrix theory
WorldCat.org
Full Text: DOI
References:
[1] T.J. Laffey, Helena, S˘migoc, On a Classic Example in the Nonnegative Inverse Eigenvalue Problem, vol. 17, ELA, July 2008, pp. 333 -- 342.
[2] S&breve, Helena; Migoc: The inverse eigenvalue problem for nonnegative matrices, Linear algebra appl. 393, 365-374 (2004)
[3] Lowey, R.; London, D.: A note on an inverse problem for nonnegative matrices, Linear and multilinear algebra 6, 83-90 (1978) · Zbl 0376.15006 · doi:10.1080/03081087808817226
[4] Reams, R.: An inequality for nonnegative matrices and the inverse eigenvalue problem, Linear and multilinear algebra 41, 367-375 (1996) · Zbl 0887.15015 · doi:10.1080/03081089608818485
[5] Laffey, T. J.; Meehan, E.: A characterization of trace zero nonnegative $5\times 5$ matrices, Linear algebra appl. 302 -- 303, 295-302 (1999) · Zbl 0946.15008 · doi:10.1016/S0024-3795(99)00099-3
[6] Ikramov, Kh.D.; Chugunov, V. N.: Inverse matrix eigenvalue problems, J. math. Sci. 98, No. 1, 51-136 (2000) · Zbl 0954.65032 · doi:10.1007/BF02355380
[7] Suleimanova, K. R.: Stochastic matrices with real characteristic values, Dokl. akad. Nauk. SSSR 66, 343-345 (1949) · Zbl 0035.20903
[8] Johnson, C. R.: Row stochastic matrices similar to doubly stochastic matrices, Linear and multilinear algebra 10, No. 2, 113-130 (1981) · Zbl 0455.15019 · doi:10.1080/03081088108817402
[9] Friedland, S.: On an inverse problem for nonnegative and eventually nonnegative matrices, Israel J. Math. 29, No. 1, 43-60 (1978) · Zbl 0407.15015 · doi:10.1007/BF02760401
[10] S&breve, Helena; Migoc: Construction of nonnegative matrices and the inverse eigenvalue problem, Linear and multilinear algebra 53, No. 2, 85-96 (2005)
[11] Torre-Mayo, J.; Abril-Raymundo, M. R.; Alarcia-Estevez, E.; Marijuan, C.; Pisonero, M.: The nonnegative inverse eigenvalue problem from the coefficients of the characteristic polynomial. EBL digraphs, Linear algebra appl. 426, 729-773 (2007) · Zbl 1136.15007 · doi:10.1016/j.laa.2007.06.014
[12] Eleanor Meehan, Some Results On Matrix Spectra, Ph.D. Thesis, University College Dublin, 1998. · Zbl 0907.15013
[13] Rojo, Oscar; Soto, Ricardo L.: Existence and construction of nonnegative matrices with complex spectrum, Linear algebra appl. 368, 53-69 (2003) · Zbl 1031.15017 · doi:10.1016/S0024-3795(02)00650-X