On endoscopic transfer of Deligne-Lusztig functions. (English) Zbl 1241.22021

In the representation theory of \(p\)-adic groups, the notions of endoscopic groups and endoscopic transfer are important. Let \(G\) be a connected, reductive algebraic group over a \(p\)-adic field \(F\), and let \(H\) be an endoscopic subgroup (for \(SL(2)\) for instance, there are three such subgroups: \(SL(2)\) itself, \(\mathbf{G}_m\) and \(U_E\), a 1-dimensional torus splitting over a quadratic extension \(E\) of \(F\)). Results due to Langlands, Shelstad, Ngô and Waldspurger imply that corresponding to any \(\phi \in C^{\infty}_c(G(F))\), there exists \(\phi^H \in C^{\infty}_c(H(F))\) which has “matching orbital integrals”. Such a \(\phi^H\) is called an endoscopic transfer of \(\phi\). Although an endoscopic transfer is not unique in general, Langlands conjectured (known since then as “the fundamental lemma”) that for spherical functions \(\phi\), there is a unique spherical endoscopic transfer. The fundamental lemma was proved by a combination of results due to Hales, Ngô and Waldspurger; it is even true that \(\phi \mapsto \phi^H\) is an explicit algebra homomorphism.
It is expected even in general that for all “interesting” functions \(\phi\), one can define explicitly the “best” endoscopic transfer. In 1997, Kottwitz suggested a conjectural candidate for \(\phi^H\) when \(G\) is split, adjoint (in this case \(H\) is necessarily split) and \(\phi\) is supported on \(G(O_F)\) and equals the inflation of the character of a unipotent Deligne-Lusztig virtual representation of \(G(\mathbf{f})\), where \(\mathbf{f}\) is the residue field of \(F\). He conjectured that \(\phi^H\) is an explicit linear combination of unipotent Deligne-Lusztig functions for \(H(F)\), supported on \(H(O_F)\).
This important paper proves a generalization of Kottwitz’s conjecture under the (mild) hypothesis that the residue characteristic does not divide the order of the Weyl group of \(G\). The authors use a theorem of Waldspurger whose proof is global, apart from which the arguments of the paper are local. The main theorem of the paper also implies the fundamental lemma for the characteristic function of the Iwahori subgroup as well as the fundamental lemma for unit elements. However, as the authors point out, it is not a new proof of the fundamental lemma for unit elements since they use Waldspurger’s theorem whose proof already used the fundamental lemma for unit elements. There are also some results of independent interest; for instance, the authors prove (a result apparently known to specialists) that the local Langlands correspondence for tori is compatible with field extensions.


22E50 Representations of Lie and linear algebraic groups over local fields
22E35 Analysis on \(p\)-adic Lie groups
Full Text: DOI arXiv Euclid


[1] A. Borel, Linear Algebraic Groups , Grad. Texts in Math. 126 , Springer, Berlin, 1991. · Zbl 0726.20030
[2] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, II: Schémas en groupes. Existence d’une donnée radicielle valuée , Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197-376. · Zbl 0597.14041
[3] S. DeBacker, Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory , Michigan Math. J. 54 (2006), 157-178. · Zbl 1118.22005
[4] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields , Ann. of Math. (2) 103 (1976), 103-161. · Zbl 0336.20029
[5] T. C. Hales, “A simple definition of transfer factors for unramified groups” in Representation Theory of Groups and Algebras , Contemp. Math. 145 , Amer. Math. Soc., Providence, 1993, 109-134. · Zbl 0828.22015
[6] T. C. Hales, On the fundamental lemma for standard endoscopy: Reduction to unit elements , Canad. J. Math. 47 (1995), 974-994. · Zbl 0840.22032
[7] H. Jacquet and R. P. Langlands, Automorphic Forms on GL (2), Lecture Notes in Math. 114 , Springer, Berlin, 1970. · Zbl 0236.12010
[8] D. Kazhdan, “On lifting” in Lie Group Representations, II (College Park, Md., 1982/1983) , Lecture Notes in Math. 1041 , Springer, Berlin, 1984, 209-249. · Zbl 0538.20014
[9] D. Kazhdan and A. Polishchuk, “Generalization of a theorem of Waldspurger to nice representations” in The Orbit Method in Geometry and Physics (Marseille, 2000) , Progr. Math. 213 , Birkhäuser, Boston, 2003, 197-242. · Zbl 1152.11331
[10] D. Kazhdan and Y. Varshavsky, “Endoscopic decomposition of certain depth zero representations” in Studies in Lie Theory , Progr. Math. 243 , Birkhäuser, Boston, 2006, 223-301. · Zbl 1109.22011
[11] R. E. Kottwitz, Rational conjugacy classes in reductive groups , Duke Math. J. 49 (1982), 785-806. · Zbl 0506.20017
[12] R. E. Kottwitz, Stable trace formula: Cuspidal tempered terms , Duke Math. J. 51 (1984), 611-650. · Zbl 0576.22020
[13] R. E. Kottwitz, Stable trace formula: Elliptic singular terms , Math. Ann. 275 (1986), 365-399. · Zbl 0577.10028
[14] R. E. Kottwitz, “Endoscopy for Hecke algebras” in Representation Theory of Real and p-adic Reductive Groups, Seattle, 1997 , conference proceedings, (accessed 28 December 2011).
[15] R. E. Kottwitz and D. Shelstad, Foundations of Twisted Endoscopy , Astérisque 255 , Soc. Math. France, Paris, 1999. · Zbl 0958.22013
[16] J.-P. Labesse, Cohomologie, L-groupes et fonctorialité , Compos. Math. 55 (1985), 163-184. · Zbl 0595.12004
[17] E. Landvogt, A Compactification of the Bruhat-Tits Building , Lecture Notes in Math. 1619 , Springer, Berlin, 1996. · Zbl 0935.20034
[18] R. P. Langlands, Stable conjugacy: Definitions and lemmas , Canad. J. Math. 31 (1979), 700-725. · Zbl 0421.12013
[19] R. P. Langlands, Representations of abelian algebraic groups , Pacific J. Math. (1997), special issue, 231-250. · Zbl 0910.11045
[20] R. P. Langlands and D. Shelstad, On the definition of transfer factors , Math. Ann. 278 (1987), 219-271. · Zbl 0644.22005
[21] R. P. Langlands and D. Shelstad, “Descent for transfer factors” in The Grothendieck Festschrift, Vol. II , Progr. Math. 87 , Birkhäuser, Boston, 1990, 485-563. · Zbl 0743.22009
[22] G. Lusztig, Green functions and character sheaves , Ann. of Math. (2) 131 (1990), 355-408. · Zbl 0695.20024
[23] A. Moy and G. Prasad, Unrefined minimal K-types for p-adic groups , Invent. Math. 116 (1994), 393-408. · Zbl 0804.22008
[24] B. C. Ngô, Le lemme fondamental pour les algèbres de Lie , Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1-169. · Zbl 1200.22011
[25] J.-P. Serre, A Course in Arithmetic , Grad. Texts in Math. 7 , Springer, New York, 1973. · Zbl 0256.12001
[26] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups , Invent. Math. 36 (1976), 173-207. · Zbl 0374.20054
[27] J.-L. Waldspurger, Sur les germes de Shalika pour les groupes linéaires , Math. Ann. 284 (1989), 199-221. · Zbl 0651.22010
[28] J.-L. Waldspurger, Une formule des traces locale pour les algèbres de Lie p-adiques , J. Reine Angew. Math. 465 (1995), 41-99. · Zbl 0829.11030
[29] J.-L. Waldspurger, Le lemme fondamental implique le transfert , Compos. Math. 105 (1997), 153-236. · Zbl 0871.22005
[30] J.-L. Waldspurger, Transformation de Fourier et endoscopie , J. Lie Theory 10 (2000), 195-206. · Zbl 1007.11026
[31] J.-L. Waldspurger, Endoscopie et changement de caractéristique , J. Inst. Math. Jussieu 5 (2006), 423-525. · Zbl 1102.22010
[32] A. Weil, Sur certains groupes d’opérateurs unitaires , Acta Math. 111 (1964), 143-211. · Zbl 0203.03305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.