zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Landen inequalities for zero-balanced hypergeometric functions. (English) Zbl 1241.26021
Summary: For zero-balanced Gaussian hypergeometric functions $F(a, b; a + b; x)$, $a, b > 0$, we determine maximal regions of $ab$ plane where well-known Landen identities for the complete elliptic integral of the first kind turn on respective inequalities valid for each $x \in (0, 1)$. Thereby an exhausting answer is given to the open problem from the work by {\it G. D. Anderson, M. K. Vamanamurthy}, and {\it M. Vuorinen} [Conformal invariants, inequalities, and quasiconformal maps. Wiley (1997; Zbl 0885.30012), p. 79].

26D15Inequalities for sums, series and integrals of real functions
33C05Classical hypergeometric functions, ${}_2F_1$
Full Text: DOI arXiv
[1] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol. 3: More Special Functions, Gordon & Breach, New York, NY, USA, 1988. · Zbl 0733.00005
[2] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, NY, USA, 1965.
[3] R. Askey, “Ramanujan and hypergeometric and basic hypergeometric series,” Russian Mathematical Surveys, vol. 45, no. 1, pp. 37-86, 1990. · Zbl 0722.33009 · doi:10.1070/RM1990v045n01ABEH002325
[4] G. D. Anderson, M. K. Vamanamurthy, and M. K. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, NY, USA, 1997. · Zbl 0885.30012
[5] F. Belzunce, E.-M. Ortega, and J. M. Ruiz, “On non-monotonic ageing properties from the Laplace transform, with actuarial applications,” Insurance: Mathematics & Economics, vol. 40, no. 1, pp. 1-14, 2007. · Zbl 1273.91231 · doi:10.1016/j.insmatheco.2006.01.010
[6] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, UK, 4th edition, 1958. · Zbl 45.0433.02
[7] A. Baricz, “Landen-type inequality for Bessel functions,” Computational Methods and Function Theory, vol. 5, no. 2, pp. 373-379, 2005. · Zbl 1104.33002 · doi:10.1007/BF03321104
[8] A. Baricz, Generalized Bessel Functions of the First Kind, vol. 1994 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2010. · Zbl 1203.33001
[9] G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen, “Inequalities for zero-balanced hypergeometric functions,” Transactions of the American Mathematical Society, vol. 347, no. 5, pp. 1713-1723, 1995. · Zbl 0826.33003 · doi:10.2307/2154966
[10] S.-L. Qiu and M. Vuorinen, “Landen inequalities for hypergeometric functions,” Nagoya Mathematical Journal, vol. 154, pp. 31-56, 1999. · Zbl 0944.33004
[11] A. Baricz, Email to the second author, June 2005.
[12] S. Ponnusamy and M. Vuorinen, “Asymptotic expansions and inequalities for hypergeometric functions,” Mathematika, vol. 44, no. 2, pp. 278-301, 1997. · Zbl 0897.33001 · doi:10.1112/S0025579300012602