Feng, Dahe; Li, Kezan Exact traveling wave solutions for a generalized Hirota-Satsuma coupled KdV equation by Fan sub-equation method. (English) Zbl 1241.35178 Phys. Lett., A 375, No. 23, 2201-2210 (2011). Summary: In this Letter, the Fan sub-equation method is used to construct exact solutions of a generalized Hirota-Satsuma coupled KdV equation. Many exact traveling wave solutions are successfully obtained, which contain more general solitary wave solutions and Jacobian elliptic function solutions with double periods. This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations. Cited in 12 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35C07 Traveling wave solutions 35C08 Soliton solutions Keywords:Fan sub-equation method; generalized Hirota-Satsuma coupled KdV equation; solitary wave solution; periodic wave solution PDF BibTeX XML Cite \textit{D. Feng} and \textit{K. Li}, Phys. Lett., A 375, No. 23, 2201--2210 (2011; Zbl 1241.35178) Full Text: DOI References: [1] Chen, A. Y.; Li, J. B., J. Math. Anal. Appl., 369, 758 (2010) [2] Feng, D. H.; Li, J. B., Phys. Lett. A, 369, 255 (2007) [3] Yan, Z. Y., Phys. Lett. A, 292, 100 (2001) [4] Fan, E. G., Phys. Lett. A, 277, 212 (2000) [5] Peng, Y. Z., Phys. Lett. A, 314, 401 (2003) [6] Zhou, Y. B.; Wang, M. L.; Miao, T. D., Phys. Lett. A, 323, 77 (2004) [7] Wang, M. L., Phys. Lett. A, 213, 279 (1996) [8] Ganji, D. D.; Rafei, M., Phys. Lett. A, 356, 131 (2006) · Zbl 1160.35517 [9] Jalaal, M.; Ganji, D. D.; Ahmadi, G., Adv. Powder Technol., 21, 298 (2010) [10] Jalaal, M.; Ganji, D. D., Adv. Powder Technol., 22, 58 (2011) [11] Jalaal, M.; Ganji, D. D., Powder Technol., 198, 82 (2010) [12] Tari, H.; Ganji, D. D.; Rostamian, M., Int. J. Nonlinear Sci. Numer. Simul., 8, 203 (2007) [13] Joneidi, A. A.; Ganji, D. D.; Babaelahi, M., Int. Commun. Heat Mass Trans., 36, 757 (2009) [15] Ganji, D. D.; Abdollahzadeh, M., Appl. Math. Comput., 206, 438 (2008) [16] Shateri, M.; Ganji, D. D., Int. J. Differ. Equ., 2010 (2010), Art. ID 954674, 11 pp [17] Yomba, E., Phys. Lett. A, 336, 463 (2005) [18] Fan, E. G., Chaos Solitons Fractals, 16, 819 (2003) [19] Chen, Y.; Wang, Q.; Li, B., Chaos Solitons Fractals, 22, 675 (2004) [20] Hu, J. Q., Chaos Solitons Fractals, 23, 391 (2005) [21] Zhang, S.; Xia, T. C., Phys. Lett. A, 356, 119 (2006) [22] Yomba, E., Chaos Solitons Fractals, 27, 187 (2006) [23] El-Wakil, S. A.; Abdou, M. A., Chaos Solitons Fractals, 36, 343 (2008) [24] Feng, D. H.; Luo, G. X., Appl. Math. Comput., 215, 1949 (2009) [25] Wu, Y. T.; Geng, X. G.; Hu, X. B.; Zhu, S. M., Phys. Lett. A, 255, 259 (1999) [26] Hirota, R.; Satsuma, J., Phys. Lett. A, 85, 407 (1981) [27] Fan, E. G., Phys. Lett. A, 282, 18 (2001) [28] Fan, E. G.; Hon, B. Y.C., Phys. Lett. A, 292, 335 (2002) [29] Ganji, D. D.; Rafei, M., Phys. Lett. A, 356, 131 (2006) · Zbl 1160.35517 [30] Zhang, J. L.; Wang, M. L.; Wang, Y. M.; Fang, Z. D., Phys. Lett. A, 350, 103 (2006) [31] Ali, A. H.A., Phys. Lett. A, 363, 420 (2007) [32] Abbasbandy, S., Phys. Lett. A, 361, 478 (2007) · Zbl 1273.65156 [33] Zhang, H. Q., Commun. Nonlinear Sci. Numer. Simul., 12, 1120 (2007) [34] Zayed, E. M.E.; Zedan, H. A.; Gepreel, K. A., Chaos Solitons Fractals, 22, 285 (2004) [35] Kaya, D., Appl. Math. Comput., 147, 69 (2004) [36] Rady, A. S.A.; Osman, E. S., Commun. Nonlinear Sci. Numer. Simul., 15, 264 (2010) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.