×

The fractional variational iteration method using He’s polynomials. (English) Zbl 1241.35216

Summary: In this Letter, by introducing He’s polynomials in the correct functional, we propose a new fractional variational iteration method to solve nonlinear time-fractional partial differential equations involving Jumarie’s modified Riemann-Liouville derivative. Several examples are solved to illustrate that the proposed method is quite effective and convenient for solving kinds of nonlinear fractional order problems.

MSC:

35R11 Fractional partial differential equations
35C08 Soliton solutions
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Jumarie, G., Internat. J. Systems Sci., 6, 1113 (1993)
[2] Jumarie, G., J. Appl. Math. Comput., 24, 31 (2007)
[3] Jumarie, G., Appl. Math. Lett., 22, 1659 (2009)
[4] Jumarie, G., Appl. Math. Lett., 23, 1444 (2010)
[5] Varlamov, V., Discrete Contin. Dyn. Syst., 7, 675 (2001)
[6] Shermenev, A.; Shermeneva, M., Phys. Rev. E, 61, 6000 (2000)
[7] Karpman, V. I., Phys. Rev. E, 58, 5070 (1998)
[8] Christov, C. I.; Maugin, G. A.; Velarde, M. G., Phys. Rev. E, 54, 3621 (1996)
[9] Gerasik, V.; Stastna, M., Phys. Rev. E, 81, 056602 (2010)
[10] Manna, M. A.; Merle, V., Phys. Rev. E, 57, 6206 (1998)
[11] Ye, C.; Zhang, W., Appl. Math. Comput., 217, 716 (2010)
[12] Odibat, Z. M., Chaos Solitons Fractals, 40, 1264 (2009)
[13] Cui, M., J. Comput. Phys., 228, 7792 (2009)
[14] El-Sayed, A. M.A.; Gaber, M., Phys. Lett. A, 359, 175 (2006)
[15] Momani, S.; Odibat, Z. M.; Erturk, V. S., Phys. Lett. A, 370, 379 (2007)
[16] Momani, S.; Odibat, Z. M., Phys. Lett. A, 365, 345 (2007)
[17] Odibat, Z. M.; Momani, S., Phys. Lett. A, 369, 349 (2007)
[18] Takaĉi, D.; Takaĉi, A.; Ŝtrboja, M., Nonlinear Anal., 72, 2367 (2010)
[19] Eidelman, S. D.; Kochubei, A. N., J. Differential Equations, 199, 211 (2004) · Zbl 1129.35427
[20] Xue, C.; Nie, J.; Tan, W., Nonlinear Anal., 69, 2086 (2008)
[21] Molliq, R. Y.; Noorani, M. S.M.; Hashim, I., Nonlinear Anal., 10, 1854 (2009)
[22] Wu, G.; Lee, E. W.M., Phys. Lett. A, 374, 2506 (2010)
[23] Mohyud-Din, S. T.; Noor, M. A.; Noor, K. I., Int. J. Nonlinear Sci. Numer. Simul., 10, 227 (2009)
[24] Mohyud-Din, S. T.; Yildirim, A., Z. Naturfor. A, 65, 525 (2010)
[25] Ghorbani, A., Chaos Solitons Fractals, 39, 1486 (2009)
[26] He, J. H., Commun. Nonlinear Sci. Numer. Simul., 2, 235 (1997)
[27] Abdou, M. A., Phys. Lett. A, 366, 61 (2007)
[28] Inc, M., Phys. Lett. A, 366, 20 (2007)
[29] He, J. H., Comput. Methods Appl. Math., 178, 257 (1999)
[30] He, J. H., Int. J. Nonlinear Mech., 35, 37 (2000)
[31] Wazwaz, A. M., Appl. Math. Comput., 159, 559 (2004)
[32] Odibat, Z. M., Phys. Lett. A, 372, 4045 (2008)
[33] Wazwaz, A. M., Appl. Math. Comput., 173, 150 (2006)
[34] Odibat, Z. M., Phys. Lett. A, 370, 295 (2007)
[35] Momani, S., Math. Comput. Simulation, 70, 110 (2005)
[36] Momani, S.; Odibat, Z. M., Appl. Math. Comput., 177, 488 (2006)
[37] Inc, M., J. Math. Anal. Appl., 345, 476 (2008)
[38] Abassy, T. A.; El-Tawil, M. A.; El-Zoheiry, H., Comput. Math. Appl., 54, 955 (2007)
[39] Tatari, M.; Dehghan, M., Comput. Math. Appl., 58, 2160 (2009)
[40] Ghorbani, A., Comput. Math. Appl., 56, 1032 (2008)
[41] Jafari, H.; Momani, S., Phys. Lett. A, 370, 388 (2007)
[42] Feng, X.; He, Y.; Meng, J., J. Comput. Appl. Math., 231, 288 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.